精英家教网 > 高中数学 > 题目详情
函数f(x)=lnx-x-a有两个不同的零点,则实数a的取值范围是(  )
A、(-∞,-1]
B、(-∞,-1)
C、[-1,+∞)
D、(-1,+∞)
考点:函数零点的判定定理
专题:计算题,作图题,函数的性质及应用
分析:函数f(x)=lnx-x-a有两个不同的零点可化为y=lnx-x与y=a有两个不同的交点,从而作图解得.
解答: 解:函数f(x)=lnx-x-a有两个不同的零点可化为
y=lnx-x与y=a有两个不同的交点,
作y=lnx-x与y=a的图象如下,

则实数a的取值范围是(-∞,-1);
故选B.
点评:本题考查了函数的零点与函数的图象关系应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥D-ABC中,AB=BC=2,BD=3,∠ABC=∠DBA=∠DBC=60°,E为AC的中点.
(1)求证:AC⊥平面BDE.
(2)求三棱锥D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆周上按顺时针方向标有1,2,3,4,5五个点,一只青蛙按瞬时针方向绕圆从一个点跳到下一个点.若它停在奇数点上,则下一次只能跳一个点,若停在偶数点上,则可以连续跳2个点.该青蛙从5这点起跳,经2009次跳后它将停在的点是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元.为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有
 
种不同的购买奖品方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读程序框图,若输入m=1,n=2,则输出n=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,其前n项和Sn满足2Sn=a
 
2
n
+an(n∈N*).
(1)证明:{an}为等差数列;
(2)令bn=
lnan
a
2
n
,记{bn}的前n项和为Tn,求证:Tn
2n2-n-1
4(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
=(-2,0),
OB
=(0,2)(O为坐标原点),点C在曲线
x=1+cosθ
y=sinθ
(θ为参数)上运动,则△ABC面积的最大值为(  )
A、3-
2
B、3+
2
C、
6+
2
2
D、
3-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设2x=5y=m,且
1
x
+
1
y
=2,则m的值是(  )
A、±
10
B、
10
C、10
D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(2,1),
b
=(-4,k),且
a
b
,则3
a
+2
b
=(  )
A、(-2,4)
B、( 4,7)
C、(-2,19)
D、(19,2)

查看答案和解析>>

同步练习册答案