(本题满分16分)第(1)小题满分6分,第(2)小题满分5分,第(3)小题满分5分。
已知函数。
(1)当时,画出函数的大致图像,并写出其单调递增区间;
(2)若函数在上是单调递减函数,求实数的取值范围;
(3)若不等式对恒成立,求实数的取值范围.
解:(1)时,,的图象如图,图象画出,-------------------3分
单调递增区间为。-------------------6分
(2)解一:设,
当在上单调递减时,对都成立,-------------------8分
即,对都成立,-------------------10分
所以-------------------11分
解二:数形结合方法:时,-------------------8分
若函数在上是单调递减函数,则 -------------------10分
所以 -------------------11分
(3)当时,成立,所以; -------------------12分
当时,,即,只要; -------------------13分
设,在上递减,在上递增,
当时,;-------------------14分
所以 -------------------15分
综上, 对恒成立的实数的取值范围是。-------------------16分
科目:高中数学 来源: 题型:
(本题满分16分,第一小题8分;第二小题8分)
已知是轴正方向的单位向量,设=, =,且满足.
求点的轨迹方程;
过点的直线交上述轨迹于两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三第三次月考试题文科数学 题型:解答题
. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
已知公差大于零的等差数列的前项和为,且满足,,
(1)求数列的通项公式;
(2)若数列是等差数列,且,求非零常数;
(3)若(2)中的的前项和为,求证:.
查看答案和解析>>
科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义在上的偶函数,当时,且函数图象关于直线对称,求证:,并求时的解析式;
(3)在(2)的条件下,不等式在上恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(理) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).
(1) 若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;
(2) 若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3) 对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分,第一小题8分;第二小题8分)
已知是轴正方向的单位向量,设=, =,且满足.
(1) 求点的轨迹方程;
(2) 过点的直线交上述轨迹于两点,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com