精英家教网 > 高中数学 > 题目详情

【题目】某钢厂打算租用 两种型号的火车车皮运输900吨钢材, 两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且型车皮不多于型车皮7个,分别用 表示租用 两种车皮的个数.

(Ⅰ)用 列出满足条件的数学关系式,并画出相应的平面区域;

(Ⅱ)分别租用 两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.

【答案】(Ⅰ)见解析; (Ⅱ)分别租用两种车皮5个,12个时租金最小,且最小租金为36.8万.

【解析】试题分析:

(Ⅰ)由已知条件列出的约束条件,可画出可行域;

(Ⅱ)求出目标函数为,作直线,易知向上平移直线时, 增大,从而可得最优解.

试题解析:

(Ⅰ)由已知 满足的数学关系式为

该二元一次不等式组所表示的平面区域为图中阴影部分所示.

(Ⅱ)设租金为元,则目标函数,所以,这是斜率为.在轴上的截距为的一族平行直线.

取最小值时, 的值最小,又因为 满足约束条件,所以由图可知,当直线经过可行域中的点时,截距的值最小,即的值最小.

解方程组,得点的坐标为.

所以(万元).

答:分别租用两种车皮5个,12个时租金最小,且最小租金为36.8万.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2
(1)求函数f(x)的定义域和值域;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线垂直,求的值;

(Ⅱ)当时,求证:存在实数使.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求函数的单调区间;

(Ⅱ)方程有3个不同的实根,求实数的取值范围;

(Ⅲ)当时,若对于任意的,都存在,使得,求满足条件的正整数的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某奥运会主体育场的简化钢结构俯视图如图所示,内外两圈的钢骨架是离心率相同的椭圆,我们称这两个椭圆相似。

(1)已知椭圆,写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点关于直线对称,求实数的取值范围;

(2)从外层椭圆顶点AB向内层椭圆引切线ACBD,设内层椭圆方程为+=1 (ab0)ACBD的斜率之积为-,求椭圆的离心率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x﹣sin4x.下列结论正确的是(
A.函数f(x)在区间[0, ]上是减函数
B.函数f(x)的图象关于原点对称
C.f(x)的最小正周期为
D.f(x)的值域为[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切.

1)求圆C的方程;

2)过点的直线与圆C交于不同的两点,且当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线上,且与直线相切于点

1)求圆C的方程;

2)是否存在过点的直线与圆C交于两点,且的面积为O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱 中,侧面和侧面都是矩形, 是边长为的正三角形, 分别为的中点.

(1)求证: 平面

(2)求证:平面平面.

(3)若平面,求棱的长度.

查看答案和解析>>

同步练习册答案