【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点作轴的平行线交抛物线的准线于,直线交抛物线于点.
(Ⅰ)求抛物线的方程;
(Ⅱ)求证:直线过定点,并求出此定点的坐标.
【答案】(I);(II)证明见解析.
【解析】试题分析:(Ⅰ)将曲线化为标准方程,可求得的焦点坐标分别为,可得,所以,即抛物线的方程为;(Ⅱ)结合(Ⅰ),可设,得,从而直线的方程为,联立直线与抛物线方程得,解得,直线的方程为,整理得的方程为,此时直线恒过定点.
试题解析:(Ⅰ)由曲线,化为标准方程可得, 所以曲线是焦点在轴上的双曲线,其中,故, 的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,所以,即抛物线的方程为.
(Ⅱ)由(Ⅰ)知抛物线的准线方程为,设,显然.故,从而直线的方程为,联立直线与抛物线方程得,解得
①当,即时,直线的方程为,
②当,即时,直线的方程为,整理得的方程为,此时直线恒过定点, 也在直线的方程为上,故直线的方程恒过定点.
【题型】解答题
【结束】
21
【题目】已知函数,
(Ⅰ)当时,求函数的单调递减区间;
(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;
(Ⅲ)若数列满足, ,记的前项和为,求证: .
【答案】(I);(II);(III)证明见解析.
【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 在上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.
试题解析:(Ⅰ)由,得.所以
令,解得或(舍去),所以函数的单调递减区间为 .
(Ⅱ)由得,
当时,因为,所以显然不成立,因此.
令,则,令,得.
当时, , ,∴,所以,即有.
因此时, 在上恒成立.
②当时, , 在上为减函数,在上为增函数,
∴,不满足题意.
综上,不等式在上恒成立时,实数的取值范围是.
(III)证明:由知数列是的等差数列,所以
所以
由(Ⅱ)得, 在上恒成立.
所以. 将以上各式左右两边分别相加,得
.因为
所以
所以.
科目:高中数学 来源: 题型:
【题目】我们称一个非负整数集合(非空)为好集合,若对任意,或者,或者.以下记为的元素个数.
(Ⅰ)给出所有的元素均小于的好集合;(给出结论即可)
(Ⅱ)求出所有满足的好集合;(同时说明理由)
(Ⅲ)若好集合满足,求证: 中存在元素,使得中所有元素均为的整数倍.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数与常数,若恒成立,则称为函数的一个“数对”;设函数的定义域为,且.
(Ⅰ)若是的一个“数对”,且,求常数的值;
(Ⅱ)若是的一个“数对”,求;
(Ⅲ)若是的一个“数对”,且当, ,求的值及在区间上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为.
(1)求的解析式;
(2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,试写出函数的解析式.
(3)在(2)的条件下,若存在,使得不等式成立,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是半圆的直径,,是将半圆圆周四等分的三个分点.
(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;
(2)在半圆内任取一点,求的面积大于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年初,湖北出现由新型冠状病毒引发的肺炎.各级政府相继启动重大突发公共卫生事件一级响应,全国齐心抗击疫情,基本上控制住了疫情.下图为月日至月日我国新型冠状病毒肺炎全国总新增确诊人数和新增境外输入确诊人数趋势图(数据来源:国家卫健委官网),则下列表述中错误的是( )
A.3月上旬全国总新增确诊人数呈波动下降趋势.
B.3月中下旬全国总新增确诊人数开始反弹的主要原因是境外输入病例的增加.
C.全国总新增确诊人数随着境外输入确诊人数变化而变化.
D.4月中下旬国内新增确诊人数呈越来越少的趋势.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com