精英家教网 > 高中数学 > 题目详情
等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于________.
设AB=2,作CO⊥平面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C-AB-D的平面角,
CH=,OH=CH·cos∠CHO=1,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则AN=EM=CH=.
=(+),=-,
·=(+=.
故EM,AN所成角的余弦值为=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•湖北)如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为3,点E在侧棱AA1上,点F在侧棱BB1上,且AE=2,BF=

(I) 求证:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是边长为2的正方形,,ED=1,//BD,且.
(1)求证:BF//平面ACE;
(2)求证:平面EAC平面BDEF;
(3)求二面角B-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱中,,D、E分别是的中点,

(1)求证:面⊥面BCD;
(2)求直线与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若m,n是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:
①若
②若
③若
④若m,n是异面直线,
其中真命题是(   )
A.①和④B.①和③C.③和④D.①和②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱柱ABCDA1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是正方体的棱的中点,点分别是线段上的点,则与平面垂直的直线有(   )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体中,线段上(不包括端点)各有一点,且,下列说法中,不正确的是(  )
四点共面
B.直线与平面所成的角为定值
C.
D.设二面角的大小为,则的最小值为

查看答案和解析>>

同步练习册答案