精英家教网 > 高中数学 > 题目详情

【题目】数列{an}中,a1=1,Sn表示前n项和,且Sn , Sn+1 , 2S1成等差数列.
(1)计算S1 , S2 , S3的值;
(2)根据以上结果猜测Sn的表达式,并用数学归纳法证明你的猜想.

【答案】
(1)解:S1=a1=1,由已知有2S2=S1+2S2,得S2=

又2S3=S2+2S2,得S3=


(2)解:由以上结果猜测:Sn=

② 当n=1时,S1= =1,猜想成立

②假设当n=k时猜想成立,则有Sk=

当n=k+1时,∵2Sk+1=Sk+2S1

∴Sk+1= +2=

S=

∴n=k+1时猜想成立,

故由①和②,可知猜想成立


【解析】(1)Sn , Sn+1 , 2S1成等差数列,得到2Sn+1=Sn+Sn+1 , 可求S1 , S2 , S3的值;(2)由(1)猜想Sn的表达式,再根据数学归纳法的证题步骤进行证明.
【考点精析】本题主要考查了数学归纳法的定义的相关知识点,需要掌握数学归纳法是证明关于正整数n的命题的一种方法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 )为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆(MN和AB、DC不重合).
(1)当MN和AB之间的距离为1米时,求此时三角通风窗EMN的通风面积;
(2)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数S=f(x);
(3)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个结论:
(1)AC⊥BD;
(2)△ACD是等边三角形
(3)AB与平面BCD所成的角为60°;
(4)AB与CD所成的角为60°.
则正确结论的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥V﹣ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为 的等腰三角形.
(1)求二面角V﹣AB﹣C的平面角的大小;
(2)求四棱锥V﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义. 20131226日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的1000个普通民众展开民意调查. 某城市调查体统计结果如下表:

  

性别

中国政府是否

需要在钓鱼岛和其他争议

问题上持续对日强硬

需要

50

250

不需要

100

150

(1) 试估计这七个代表性城市的普通民众中,认为 中国政府需要在钓鱼岛和其他争议问题上持续对日强硬的民众所占比例;

(2) 能否有以上的把握认为这七个代表性城市的普通民众的民意与性别有关?

(3) 从被调查认为中国政府需要在钓鱼岛和其他争议问题上持续对日强硬的民众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为,求的分布列.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=1﹣nan(n∈N*
(1)计算a1 , a2 , a3 , a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥如图①所示,图②是它的正(主)视图.已知圆的直径为 是圆周上异于的一点, 的中点.

(I)求该圆锥的侧面积S;

(II)求证:平面⊥平面

(III)若∠CAB=60°,在三棱锥中,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2lnx

(Ⅰ)当a=时,判断fx)的单调性;(Ⅱ)设fx≤x3+4xlnx,在定义域内恒成立,求a的取值范围。

查看答案和解析>>

同步练习册答案