精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

    从1、2、3、4、5、8、9这7个数中任取三个数,共有35种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同)。

(Ⅰ)求取出的三个数能够组成等比数列的概率;

(Ⅱ)求取出的三个数的乘积能被2整除的概率。

 

【答案】

(Ⅰ)P(A)=

(Ⅱ),P(B)=1- P(C)=1-= 

【解析】(Ⅰ)从1、2、3、4、5、8、9这7个数中任取三个数,每一种不同的取法为

一个基本事件,由题意可知共有35个基本事件。 …………………………1分

设取出的三个数能组成等比数列的事件为A,A包含(1,2,4)、(2,4,8)、

(1,3,9)共3个基本事件。            ………………………………………6分

     由于每个基本事件出现的可能性相等,所以,P(A)=    ……………7分

(Ⅱ)设取出的三个数的乘积能被2整除的事件为B,其对立事件为C,C包含

(1,3,5)、(1,3,9)、(1,5,9)、(3,5,9)共4个基本事件。………9分

    由于每个基本事件出现的可能性相等

    所以,P(C)=            …………………………………………11分

所以,P(B)=1- P(C)=1-=   …………………………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案