【题目】过轴上动点
引抛物线
的两条切线
,
,其中
,
为切线.
(1)若切线,
的斜率分别为
和
,求证:
为定值,并求出定值;
(2)当最小时,求
的值.
科目:高中数学 来源: 题型:
【题目】已知直线过点
,倾斜角为
,在以坐标原点为极点,
轴的非负半轴为极轴的极坐标系中,曲线
的方程为
.
(1)写出直线的参数方程和曲线
的直角坐标方程;
(2)若直线与曲线
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某贫困县在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养茶业.该县农科所为了对比A,B两种不同品种茶叶的产量,在试验田上分别种植了A,B两种茶叶各亩,所得亩产数据(单位:千克)如下:
A:,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
;
B:,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
;
(1)从A,B两种茶叶亩产数据中各任取1个,求这两个数据都不低于的概率;
(2)从B品种茶叶的亩产数据中任取个,记这两个数据中不低于
的个数为
,求
的分布列及数学期望;
(3)根据以上数据,你认为选择该县应种植茶叶A还是茶叶B?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有或者
两种可能,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.
(1)在不开箱检验的情况下,判断是否可以购买;
(2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.
①若此箱出现的废品率为,记抽到的废品数为
,求
的分布列和数学期望;
②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=6sinθ,建立以极点为坐标原点,极轴为x轴正半轴的平面直角坐标系.直线l的参数方程是,(t为参数).
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点,且|AB|=,求直线的斜率k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形的棱长为1,线段
上有两个动点
.
,且
,则下列结论中错误的是( )
A.;
B.三棱锥体积是定值;
C.二面角的平面角大小是定值;
D.与平面
所成角等于
与平面
所成角;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在
处按
方向释放机器人甲,同时在
处按某方向释放机器人乙,设机器人乙在
处成功拦截机器人甲.若点
在矩形区域
内(包含边界),则挑战成功,否则挑战失败.已知
米,
为
中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记
与
的夹角为
.
(1)若,
足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到
);
(2)如何设计矩形区域的宽
的长度,才能确保无论
的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域
内成功拦截机器人甲?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面
是正方形,且
,平面
平面
,
,点
为线段
的中点,点
是线段
上的一个动点.
(Ⅰ)求证:平面平面
;
(Ⅱ)当点是线段
上的中点时,求二面角
的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com