分析 首先由题目假设n=k时,代入得到f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,当n=k+1时,f(2k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$,由已知化简即可得到结果.
解答 解:因为假设n=k时,f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,
当n=k+1时,f(2k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$,
所以f(2k+1)-f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$-(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$)=$\frac{1}{{{2^k}+1}}+\frac{2}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.
故答案是:$\frac{1}{{{2^k}+1}}+\frac{2}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.
点评 此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (0,2) | C. | ($\frac{3}{2}$,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 360 | B. | 180 | C. | 90 | D. | 45 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com