精英家教网 > 高中数学 > 题目详情
11.已知$f(n)=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$,用数学归纳法证明f(2n)>$\frac{n}{2}$时,f(2k+1)-f(2k)等于$\frac{1}{{{2^k}+1}}+\frac{2}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

分析 首先由题目假设n=k时,代入得到f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,当n=k+1时,f(2k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$,由已知化简即可得到结果.

解答 解:因为假设n=k时,f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$,
当n=k+1时,f(2k+1)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$,
所以f(2k+1)-f(2k)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$-(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$)=$\frac{1}{{{2^k}+1}}+\frac{2}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.
故答案是:$\frac{1}{{{2^k}+1}}+\frac{2}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

点评 此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)(x∈R).
(1)求函数f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)若x∈[0,2π]时,求函数f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2\sqrt{3}sinxcosx+{cos^2}x-{sin^2}x$
(1)求f(x)的最小正周期及单调增区间;
(2)当$x∈[-\frac{π}{6},\frac{π}{3}]$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=ax2-2ax(a≠0).
(1)函数在区间[0,3]上有最大值3,求a的值;
(2)函数在区间上[0,3]上有最小值-3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=2asin($\frac{π}{6}$-2x)+2a+b,x∈[$\frac{π}{4}$,$\frac{3π}{4}$].
(1)是否存在常数A、b∈Q,使得f(x)的值域为{y|-3≤y≤$\sqrt{3}$-1}?若存在,求出A、B的值;若不存在,说明理由.
(2)在(1)的条件下,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}t\end{array}\right.$(t为参数),极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,曲线C的极坐标方程为ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直线l与曲线C相交于A、B两点,则弦长|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an},{bn}中,a1=a,{bn}是公比为$\frac{2}{3}$的等比数列.记bn=$\frac{{a}_{n}-2}{{a}_{n}-1}$(n∈N*)若不等式an>an+1对一切n∈N*恒成立,则实数a的取值范围是(  )
A.(0,1)B.(0,2)C.($\frac{3}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知矩阵M=$[\begin{array}{l}{x}&{5}\\{6}&{6}\end{array}]$不存在逆矩阵,则x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展开式中只有第六项的二项式系数最大,则展开式的常数项是(  )
A.360B.180C.90D.45

查看答案和解析>>

同步练习册答案