精英家教网 > 高中数学 > 题目详情
2.已知定点A(-1,0),圆C:x2+y2-2x-2$\sqrt{3}$y+3=0.
(1)过点A向圆C引切线,求切线长;
(2)过点A作直线l1交圆C于P、Q,且$\overrightarrow{AP}$=$\overrightarrow{PQ}$,求直线11的斜率k;
(3)定点M,N在直线l2:x=1上,对于圆C上任意一点R都满足RN=$\sqrt{3}$RM,试求M,N两点的坐标.

分析 (1)利用勾股定理,求切线长;
(2)过点A作直线l1交圆C于P、Q,且$\overrightarrow{AP}$=$\overrightarrow{PQ}$,利用切割线定理求出PQ,即可求直线11的斜率k;
(3)定点M,N在直线l2:x=1上,对于圆C上任意一点R都满足RN=$\sqrt{3}$RM,建立方程求M,N两点的坐标.

解答 解:(1)圆C:x2+y2-2x-2$\sqrt{3}$y+3=0,可化为(x-1)2+(y-$\sqrt{3}$)2=1.
∴C(1,$\sqrt{3}$),
∴|AC|=$\sqrt{4+3}$=$\sqrt{7}$,
∴切线长为$\sqrt{7-1}$=$\sqrt{6}$;
(2)由切割线定理,可得6=AP•AQ=2AP2,∴AP=PQ=$\sqrt{3}$
∴圆心到直线的距离d=$\sqrt{1-\frac{3}{4}}$=$\frac{1}{2}$,
设直线11的方程为y=k(x+1),即kx-y+k=0,
∴$\frac{|2k-\sqrt{3}|}{\sqrt{{k}^{2}+1}}$=$\frac{1}{2}$,∴k=$\frac{\sqrt{3}}{3}$或$\frac{11\sqrt{3}}{15}$;
(3)设M(1,a),N(1,b),R(x,y),则
RN2=(x-1)2+(y-b)2,RM2=(x-1)2+(y-a)2
∵RN=$\sqrt{3}$RM,(x-1)2+(y-$\sqrt{3}$)2=1
∴1-(y-$\sqrt{3}$)2+(y-b)2=3[1-(y-$\sqrt{3}$)2]+3(y-a)2
∴(4$\sqrt{3}$-6a+2b)y+3a2-b2-4=0,
∴4$\sqrt{3}$-6a+2b=0且3a2-b2-4=0,
∴a=$\frac{4\sqrt{3}}{3}$,b=2$\sqrt{3}$或a=$\frac{2\sqrt{3}}{3}$,b=0,
∴M(1,$\frac{4\sqrt{3}}{3}$,N(1,2$\sqrt{3}$)或M(1,$\frac{2\sqrt{3}}{3}$),N(1,0).

点评 本题考查直线与圆的位置关系,考查直线方程,考查恒成立问题,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设x>0,y>0,且(x-$\frac{1}{y}$)2=$\frac{16y}{x}$,则当x+$\frac{1}{y}$取最小值时,x2+$\frac{1}{{y}^{2}}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若-1<a<2,-2<b<1,则a-3b的取值范围是(-4,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列函数的奇偶性.
(1)y=$\frac{{x}^{2}-x}{x-1}$;
(2)f(x)=(1+x)$\sqrt{\frac{1-x}{1+x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线y=kx+4与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1有两个不同的交点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x>9,函数y=$\sqrt{x}$+$\frac{1}{\sqrt{x}-3}$的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=log0.5(1+2x+4x•a),当x∈(-∞,1]时,f(x)有意义,则实数α的值的集合为{a|a≥-2},当f(x)的定义域为(-∞,1]时,则实数α的值的集合为{a|a≥-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,是函数y=f(x)=sin(ω1x+φ1)和y=g(x)=sin(ω2x+φ2)在一个周期上的图象,为了得到y=f(x)的图象,只要将y=g(x)的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变
B.向左平移$\frac{π}{3}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变
C.向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标伸长到原来的2倍.纵坐标不变
D.向左平移$\frac{π}{2}$个单位长度.再把所得点的横坐标缩短到原来的$\frac{1}{2}$倍.纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知长方体ABCD-A1B1C1D1中,底面是边长为1的正方形,高为2,则点A1到截面AB1D1的距离是$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案