精英家教网 > 高中数学 > 题目详情

【题目】将函数y=sin2x的图象先向左平移 个单位长度,然后将所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应函数解析式为(
A.
B.y=2cos2x
C.y=2sin2x
D.y=cosx

【答案】D
【解析】解:函数y=sin2x的图象向左平移 个单位长度,得y=sin2(x+ )=cos2x将该函数所有点的横坐标变为原来的2倍(纵坐标不变),得y=cosx的图象
所以函数的解析式为y=cosx.
故选:D.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某旅游为了解2015年国庆节期间参加某境外旅游线路的游客的人均购物消费情况,随机对50人做了问卷调查,得如下频数分布表:

人均购物消费情况

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

额数

15

20

9

3

3

附:临界值表参考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d.

(1)做出这些数据的频率分布直方图并估计次境外旅游线路游客的人均购物的消费平均值;
(2)在调查问卷中有一项是“您会资助失学儿童的金额?”,调查情况如表,请补全如表,并说明是否有95%以上的把握认为资助数额多于或少于500元和自身购物是否到4000元有关?

人均购物消费不超过4000元

人均购物消费超过4000元

合计

资助超过500元

30

资助不超过500元

6

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,2AE=BD=2.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线,直线.以极点为原点,极轴为轴正半轴建立平面直角坐标系.

(1)求直线的直角坐标方程以及曲线的参数方程;

(2)已知直线与曲线交于两点,直线与曲线交于两点,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式|2x﹣1|<1的解集为M,a∈M,b∈M
(1)试比较ab+1与a+b的大小
(2)设max表示数集A的最大数,h=max{ },求证h≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果的解集为,则对于函数应有

( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2bxc(abc∈R)满足:对任意实数x,都有f(x)≥x,且当x(1,3)时,有f(x)≤ (x+2)2成立.

(1)证明:f(2)=2;

(2)若f(-2)=0,求f(x)的表达式;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,已知AB=2,

E、F分别为上的点,且.

(1)求证:BE⊥平面ACF;

(2)求点E到平面ACF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于

查看答案和解析>>

同步练习册答案