精英家教网 > 高中数学 > 题目详情

【题目】如图,点P(0,﹣1)是椭圆C1 + =1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1 , l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

【答案】
(1)解:由题意可得b=1,2a=4,即a=2.

∴椭圆C1的方程为


(2)解:设A(x1,y1),B(x2,y2),D(x0,y0).

由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.

又圆 的圆心O(0,0)到直线l1的距离d=

∴|AB|= =

又l2⊥l1,故直线l2的方程为x+ky+k=0,联立 ,消去y得到(4+k2)x2+8kx=0,解得

∴|PD|=

∴三角形ABD的面积S= =

令4+k2=t>4,则k2=t﹣4,

f(t)= = =

∴S= ,当且仅 ,即 ,当 时取等号,

故所求直线l1的方程为


【解析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1 , y1),B(x2 , y2),D(x0 , y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1 , 可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.(单位:t100≤≤150)表示下一个销售季度内的市场需求量,T(单位:)表示下一个销售季度内经销该农产品的利润.

)将T表示为的函数;

)根据直方图估计利润T不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图两座建筑物的底部都在同一个水平面上且均与水平面垂直它们的高度分别是915从建筑物的顶部看建筑物的视角

1的长度;

2在线段上取一点与点不重合),从点看这两座建筑物的视角分别为问点在何处时最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,∠C=90°,M是BC的中点,若 ,则sin∠BAC=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.

(1)计算这10名学生的成绩的均值和方差;

(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆:,过点的动直线与圆交于A,B两点,线段AB的中点为M,O为坐标原点.

M的轨迹方程;

|OP|=|OM|时,求的方程及的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fx)同时满足:

①对于定义域上的任意x恒有fx+f(﹣x)=0

②对于定义域上的任意x1x2,当x1x2时,恒有0,则称函数fx)为理想函数

给出下列四个函数中①fx fx fx;④fx

能被称为理想函数的有_______________(填相应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)对任意实数xy恒有fx+y)=fx)+fy)且当x>0,fx)<0.

给出下列四个结论:

f(0)=0;fx)为偶函数;

fx)为R上减函数;fx)为R上增函数.

其中正确的结论是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCDBEFC,点P是边BC上的一个动点,设,则.请你参考这些信息,推知函数的图象的对称轴是______;函数的零点的个数是______

查看答案和解析>>

同步练习册答案