精英家教网 > 高中数学 > 题目详情
1.已知α的终边过点($\sqrt{5}$,-2),则sin(π+α)等于(  )
A.-$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

分析 根据任意角的三角函数的定义求出sinα,利用诱导公式求解sin(π+α)即可.

解答 解:∵角α的终边过点($\sqrt{5}$,-2),
∴r=3,
∴sinα=-$\frac{2}{3}$,
∴sin(π+α)=-sinα=$\frac{2}{3}$,
故选:D.

点评 本题主要考查三角函数的定义、诱导公式的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(sinωx,cosωx),$\overrightarrow{b}$=(cosωx,$\sqrt{3}$cosωx)(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-$\frac{\sqrt{3}}{2}$的图象的一个对称中心与和它相邻的一条对称轴之间的距离为$\frac{π}{4}$.
(I)求函数f(x)的单调递增区间
(II) 在△ABC中,角A、B、C所的对边分别是a、b、c,若f(A)=$\frac{\sqrt{3}}{2}$且a=1,b=$\sqrt{2}$,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:
广告费用x(万元)23456
销售量y(万件)578911
由散点图知可以用回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$来近似刻画它们之间的关系.
(Ⅰ)求回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$;R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\overline{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“?x>1,$\sqrt{x}$>1”的否定是(  )
A.?x0>1,$\sqrt{{x}_{0}}$≤1B.?x0>1,$\sqrt{{x}_{0}}$≤1C.?x0≤1,$\sqrt{{x}_{0}}$≤1D.?x0≤1,$\sqrt{{x}_{0}}$≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设p:x≤k,q:1≤x<2,若p是q的必要条件,则实数k的取值范围是k≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x>-1,y>0,且x+y=1,则$\frac{1}{x+1}$+$\frac{4}{y}$的最小值为(  )
A.3B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0的等差数列{an}的前n项和为Sn,且S3=9,a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(an-1)2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校高一(1)班共有40人,学号依次为1,2,3,…,40,现用系统抽样的方法抽取一个容量为5的样本,若学号为2,10,18,34的同学在样本中,则还有一个同学的学号应为(  )
A.27B.26C.25D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-kx,x∈R(e是自然对数的底数).
(1)若k∈R,求函数f(x)的单调区间;
(2)若k>0,讨论函数f(x)在(-∞,4]上的零点个数.

查看答案和解析>>

同步练习册答案