精英家教网 > 高中数学 > 题目详情
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1
(2)求锐二面角D-A1A-C的平面角的余弦值;
(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(1)证明见解析;(2) 二面角D-A1A-C的平面角的余弦值是.(3)存在,点P在C1C的延长线上且使C1C=CP.

试题分析:(1)连接BD交AC于O,则BD⊥AC,连接A1O,可证A1O⊥底面ABCD,则可建立如图所示的空间直角坐标系,分别写出的坐标,进而得坐标,由坐标运算可得,即两向量垂直,得两线垂直;(2)分别求出两平面的一个法向量,利用,可得二面角的平面角的余弦值;(3)令存在,在直线CC1 上设,P(x,y,z),得=(,1+λ,λ),取平面DA1C一法向量,知·=0,得的值,P点可求.

解:连接BD交AC于O,则BD⊥AC,连接A1O.
在△AA1O中,AA1=2,AO=1,∠A1AO=60°,
∴A1O2+AO2-2AA1·AOcos 60°=3,
∴AO2+A1O2=A1A2,∴A1O⊥AO,
由于平面AA1C1C⊥平面ABCD,∴A1O⊥底面ABCD, 2分
∴以OB、OC、OA1所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,则A(0,-1,0),B(,0,0),C(0,1,0),D(,0,0),A1(0,0,).
(1)由于=(,0,0),=(0,1,),则·=0×()+1×0+×0=0,
所以:BD⊥AA1.      4分
(2)由于OB⊥平面AA1C1C,
∴平面AA1C1C的法向量=(1,0,0),设⊥平面AA1D,则
=(x,y,z),
得到,  6分

∴二面角D-A1A-C的平面角的余弦值是.  8分
(3)假设在直线CC1上存在点P,使BP∥平面DA1C1
,P(x,y,z),则(x,y-1,z)=λ(0,1,),  9分
得P(0,1+λ,λ),=(,1+λ,λ).
⊥平面DA1C1,则
=(x3,y3,z3),得到
不妨取=(1,0,-1).      10分
又∵∥平面DA1C1,则·=0,即λ=0,得λ=-1,
即点P在C1C的延长线上且使C1C=CP      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在斜三棱柱中,平面平面ABC,.
(1)求证:
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直四棱柱中,底面是矩形,是侧棱的中点.

(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A(1-t,1,t),B(2,t,t)(t∈R),则A,B两点间距离的最小值是(  )
A.
2
B.2C.
2
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案