【题目】已知函数有极值,且导函数的极值点是的零点.
(1)求关于的函数关系式,并写出定义域;
(2)证明:.
科目:高中数学 来源: 题型:
【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的离心率为,点在椭圆C上,直线与椭圆C交于不同的两点A,B.
(1)求椭圆C的方程;
(2)直线,分别交y轴于M,N两点,问:x轴上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线:(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线:.
(1)写出曲线的普通方程和曲线的直角坐标方程;
(2)若曲线上有一动点,曲线上有一动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】检验中心为筛查某种疾病,需要检验血液是否为阳性,对份血液样本,有以下两种检验方式:①逐份检验,需要检验次;②混合检验,即将其中(且)份血液样本分别取样混合在一起检验,若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,再对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;
(2)现取其中(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为点.当时,根据和的期望值大小,讨论当取何值时,采用逐份检验方式好?
(参考数据:,,,,,.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为.
(1)求椭圆C的方程;
(2)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交x轴于点N,M,若直线OT与以MN为直径的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com