精英家教网 > 高中数学 > 题目详情

【题目】已知函数有极值,且导函数的极值点是的零点.

1)求关于的函数关系式,并写出定义域;

2)证明:.

【答案】1;(2)证明见解析.

【解析】

1)根据函数解析式先求得导函数,由极值点存在条件可知,可得;再求得导函数的极值点,即可由导函数的极值点是的零点代入求得等量关系,结合不等式求得定义域.

2)利用分析法分析可知,若证明,只需证明,利用换元法转化并求得导函数,结合导函数的单调性和最值证明不等式成立即可.

1)函数,

因为有极值点,所以

化简可得

导函数的极值点是的零点.

而导函数的极值点为二次函数顶点的横坐标,所以的零点.

代入可得,化简可知

,即,解得

2)证明:要证

只要证

只要证

只要证

,则

所以

原式得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6tA型卡车,6辆载重为10tB型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率为,点在椭圆C上,直线与椭圆C交于不同的两点AB.

1)求椭圆C的方程;

2)直线分别交y轴于MN两点,问:x轴上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)设函数上有且只有一个零点,求的取值范围.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线.

1)写出曲线的普通方程和曲线的直角坐标方程;

2)若曲线上有一动点,曲线上有一动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】检验中心为筛查某种疾病,需要检验血液是否为阳性,对份血液样本,有以下两种检验方式:①逐份检验,需要检验次;②混合检验,即将其中)份血液样本分别取样混合在一起检验,若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,再对这份再逐份检验,此时这份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.

1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为点.时,根据的期望值大小,讨论当取何值时,采用逐份检验方式好?

(参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),的导数.

1)当时,令的导数.证明:在区间存在唯一的极小值点;

2)已知函数上单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)判断函数的零点的个数,并说明理由;

3)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆C的上、下顶点分别为A1A2,左、右顶点分别为B1B2,左、右焦点分别为F1F2.原点到直线A2B2的距离为.

1)求椭圆C的方程;

2P是椭圆上异于A1A2的任一点,直线PA1PA2,分别交x轴于点NM,若直线OT与以MN为直径的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

同步练习册答案