精英家教网 > 高中数学 > 题目详情
已知直线l垂直平面a,垂足为O.在矩形ABCD中AD=1,AB=2,若点A在l上移动,点 B在平面a上移动,则O、D两点间的最大距离为
A.B.C.D.
B

试题分析:因为当点点A在l上移动,点 B在平面a上移动,那么可知点B到直线L的距离为x,那么AO= ,同时有AD=1,那么结合余弦定理则有,那么将数值代入表达式可知
,结合根式和二次函数的性质可知O、D两点间的最大距离为,选B.
点评:解决该试题的关键是利用线段AB的定长为2,AD为1,那么随着点A.B的运动过程中,始终保持不变的量和改变的角度OAD之间的关系式来求解OD的最大值,采用余弦定理得到分析证明,属于难度试题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在三棱锥S.

(1)证明
(2)求侧面与底面所成二面角的大小。
(3)求异面直线SC与AB所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD

(1)求证:AB⊥平面PBC
(2)求三棱锥C-ADP的体积
(3)在棱PB上是否存在点M使CM∥平面PAD?
若存在,求的值。若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,在三棱锥S—ABC中,是边长为4的正三角形,平面SAC⊥平面ABC,SA =" SC" =,M、N分别为AB、SB的中点。

⑴ 求证:AC⊥SB;
⑵ 求二面角N—CM—B的正切值;
⑶ 求点B到平面CMN的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.

(1)求四棱锥-的体积;
(2)求证:平面
(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥的底面为菱形,平面, E、F分别为的中点,

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱中,底面是正三角形,侧棱底面,点是侧面 的中心,若,则直线与平面所成角的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为(   ).
A.75°B.60°  C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且

(1)求证:
(2)求二面角E-AP-B的余弦值.

查看答案和解析>>

同步练习册答案