精英家教网 > 高中数学 > 题目详情
(2013•房山区二模)已知M,N是不等式组
x≥1
y≥1
x-y+1≥0
x+y≤6
所表示的平面区域内的两个不同的点,则|MN|的最大值是(  )
分析:作出题中不等式组表示的平面区域,得到如图的四边形ABCD.因为四边形ABCD的对角线BD是区域中最长的线段,所以当M、N分别与对角线BD的两个端点重合时,|MN|取得最大值,由此结合两点间的距离公式可得本题答案.
解答:解:作出不等式组
x≥1
y≥1
x-y+1≥0
x+y≤6
表示的平面区域,
得到如图的四边形ABCD,其中A(1,1),B(5,1),C(
5
2
7
2
),D(1,2)
∵M、N是区域内的两个不同的点
∴运动点M、N,可得当M、N分别与对角线BD的两个端点重合时,距离最远
因此|MN|的最大值是|BD|=
(5-1)2+(1-2)2
=
17

故选:B
点评:题给出二元一次不等式组表示的平面区域内动点M、N,求|MN|的最大值,着重考查了二元一次不等式组表示的平面区域和平面内两点间的距离公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若f(x)=
1
3
x3-
1
2
x2+
1
6
x+1
,则该函数的对称中心为
(
1
2
,1)
(
1
2
,1)
,计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)已知函数f(x)=(x2+x-a)e
xa
(a>0).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)当x=-5时,f(x)取得极值.
①若m≥-5,求函数f(x)在[m,m+1]上的最小值;
②求证:对任意x1,x2∈[-2,1],都有|f(x1)-f(x2)|≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)一个几何体的三视图如图所示,则这个几何体的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)下列四个函数中,既是奇函数又在定义域上单调递增的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)已知数列{an}的前n项和为Sn,a1=1,2Sn=an+1,则Sn=(  )

查看答案和解析>>

同步练习册答案