精英家教网 > 高中数学 > 题目详情
若函数f(x)满足条件:当x1,x2∈[-1,1]时,有|f(x1)-f(x2)|≤3|x1-x2|成立,则称f(x)∈Ω.对于函数g(x)=x3,h(x)=
1
x+2
,有(  )
A、g(x)∈Ω且h(x)∉Ω
B、g(x)∉Ω且h(x)∈Ω
C、g(x)∈Ω且h(x)∈Ω
D、g(x)∉Ω且h(x)∉Ω
分析:先对f(x)讨论,利用立方差公式将|f(x1)-f(x2)|分解因式为|x1-x2|•|x12+x1x2+x22|,再根据自变量在闭区间[-1,1]上取值,可得|x12+x1x2+x22|≤x12+|x1x2|+x22≤3,因而|f(x1)-f(x2)|≤3|x1-x2|成立,得f(x)∈Ω;
再对g(x)讨论,将差通分可得|g(x1)-g(x2)|=|
x1-x2
(x1+2)(x2+2)  
|,根据自变量在闭区间[-1,1]上取值再结合倒数的方法证出
1
3
≤|
1
x1+2
|≤1
1
3
≤|
1
x2+2
|≤1
,可得故|
x1-x2
(x1+2)(x2+2) 
|≤|x1-x2|,因而|g(x1)-g(x2)|≤3|x1-x2|成立,可得g(x)∈Ω
解答:解:根据题意得:
(1)|f(x1)-f(x2)|=|x13-x23|=|x1-x2|•|x12+x1x2+x22|
因为x1,x2∈[-1,1],所以|x12+x1x2+x22|≤x12+|x1x2|+x22≤3
所以有|f(x1)-f(x2)|≤3|x1-x2|成立,可得f(x)∈Ω
(2)|g(x1)-g(x2)|=|
1
x1+2
-
1
x1+2
|=|
x1-x2
(x1+2)(x2+2)  
|
因为x1,x2∈[-1,1],所以|
1
x1+2
| ∈[
1
3
,1]
|
1
x2+2
| ∈[
1
3
,1]

故|
x1-x2
(x1+2)(x2+2) 
|≤|x1-x2|≤3|x1-x2|
所以有|g(x1)-g(x2)|≤3|x1-x2|成立,可得g(x)∈Ω
综合(1)(2)可得,g(x)∈Ω且h(x)∈Ω
故选C
点评:本题考查了函数恒成立的问题,属于中档题.做题时应该注意运用函数的简单性质与不等式证明相结合技巧的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);
②当2≤x≤4时,f(x)=1-|x-3|.试解答下列问题:
(1)设c>2,方程f(x)=2的根由小到大依次记为a1,a2,a3,…,an,…,试证明:数列a2n-1+a2n为等比数列;
(2)①是否存在常数c,使函数的所有极大值点均落在同一条直线上?若存在,试求出c的所有取值并写出直线方程;若不存在,试说明理由;②是否存在常数c,使函数的所有极大值点均落在同一条以原点为顶点的抛物线上?若存在,试求出c的所有取值并写出抛物线方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[1,+∞)上的函数f(x)满足:①f(3x)=cf(x)(c为正常数);②当3≤x≤9时,f(x)=1-|x-6|,若函数的所有极大值点均落在同一条直线上,则c=
1或3
1或3

查看答案和解析>>

科目:高中数学 来源: 题型:

设α、β、γ满足0<α<β<γ<2π,若函数f(x)=sin(x+α)+sin(x+β)+sin(x+γ)的图象是一条与x轴重合的直线,则β-α=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin(
2
+x
)是偶函数;
②函数y=cos(2x+
π
4
)图象的一条对称轴方程为x=
π
8

③对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);
④若对?x∈R,函数f(x)满足f(x+2)=-f(x),则4是该函数的一个周期.
其中真命题的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网对任意的x1<0<x2,若函数f(x)=a|x-x1|+b|x-x2|的大致图象为如图所示的一条折线(两侧的射线均平行于x轴),试写出a、b应满足的条件
 

查看答案和解析>>

同步练习册答案