精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形中,为边的中点,以为折痕把折起,使点到达点的位置,且使平面平面.

(1)证明:平面

(2)求点到平面的距离.

【答案】(1)证明见解析;(2).

【解析】

1)根据已知条件,得到,即,由平面平面,得到平面,从而得到,结合得到平面;(2)过点在平面中向引垂线,垂足,连接,得到的长,由平面平面,得到,从而得到的长,设的中点,在等腰三角形中,求出的长,利用,求出点到平面的距离.

(1)因为在矩形中,为边的中点,

所以,又,所以

所以

又平面平面,且平面平面平面

所以平面

平面

,且平面

所以平面.

(2)过点在平面中向引垂线,垂足,连接

的中点,

所以

由平面平面

,平面平面

所以平面

平面

所以

的中点,连接,在等腰三角形中,

设点到平面的距离为

,得

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fxa2xkRa0e为自然对数的底数),且曲线fx)在点(1f1))处的切线的斜率为e2a2

1)求实数k的值,并讨论函数fx)的单调性;

2)设函数gx,若对x1∈(0+∞),x2R,使不等式fx2gx1)﹣1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点焦点在x轴上,椭圆C上一点A2,﹣1)到两焦点距离之和为8.若点B是椭圆C的上顶点,点PQ是椭圆C上异于点B的任意两点.

1)求椭圆C的方程;

2)若BPBQ,且满足32的点Dy轴上,求直线BP的方程;

3)若直线BPBQ的斜率乘积为常数λλ0),试判断直线PQ是否经过定点.若经过定点,请求出定点坐标;若不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)当时,若方程有两个不等实数根,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究不同性别在处理多任务时的表现差异,召集了男女志愿者各200名,要求他们同时完成多个任务,包括解题、读地图、接电话.下图表示了志愿者完成任务所需的时间分布.以下结论,对志愿者完成任务所需的时间分布图表理解正确的是(

①总体看女性处理多任务平均用时更短;

②所有女性处理多任务的能力都要优于男性;

③男性的时间分布更接近正态分布;

④女性处理多任务的用时为正数,男性处理多任务的用时为负数.

A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点 与上顶点的距离为

(Ⅰ)求椭圆的方程和焦点的坐标;

(Ⅱ)点在椭圆上,线段的垂直平分线与轴相交于点,若为等边三角形,求点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.

拥有驾驶证

没有驾驶证

合计

得分优秀

得分不优秀

25

合计

100

(1)补全上面的列联表,并判断能否有超过的把握认为“安全意识优秀与是否拥有驾驶证”有关?

(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.

1)下表是这次抽查成绩的频数分布表,试求正整数的值;

区间

[7580

[8085

[8590

[9095

[95100]

人数

50

a

350

300

b

2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;

3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X,求X的分布列与数学期望(即均值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则使按照等差数列的规律计算得出的,下表为《周髀算经》对二十四节气晷影长的记录,其中寸表示115分(1分),已知《易经》中记录的冬至晷影长为130.0寸,夏至晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为(

节气

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

惊蛰(寒露)

晷影(寸)

135

节气

春分(秋分)

清明(白露)

谷雨(处暑)

立夏(立秋)

小满(大暑)

芒种(小暑)

夏至

晷影(寸)

75.5

16.0

A.72.4B.81.4C.82.0D.91.6

查看答案和解析>>

同步练习册答案