精英家教网 > 高中数学 > 题目详情

已知各项均为正数的两个无穷数列满足

(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;

(Ⅱ)设都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;

(Ⅲ)设,求证:

 

【答案】

(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析.

【解析】

试题分析:(Ⅰ)由是常数列,得,进而探求数列项间的关系;(Ⅱ)将等差数列 的通项公式代入,根据等式恒成立,求首项和公差;(Ⅲ)利用题中所给关系式对进行适当放缩,求出上界和下界.

试题解析:

(Ⅰ)因为数列是常数列,且,所以①,因此②,①-②得,,这说明数列的序号为奇数的项及序号为偶数的项均按原顺序组成公差为2的等差数列,又,所以,因此,即.

(Ⅱ)设都是公差分别为,将其通项公式代入,因为它是恒等式,所以,解得,因此.

由于可以取无穷多非零的实数,故数列有无穷多个,而数列惟一确定;

(Ⅲ)因为,且,所以,即,所以,得,因此.

又由得,,而,所以,因此

,所以,所以.

考点:等差数列、数列的递推关系、数列与不等式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的两个数列{an},{bn},由下表给出:
n 1 2 3 4 5
an 1 5 3 1 2
bn 1 6 2 x y
定义数列{cn}:c1=0,cn=
bncn-1an
cn-1-an+bncn-1an
(n=2,3,4,5)
,并规定数列{an},{bn}的“并和”为Sab=a1+a2+…+a5+c5,若Sab=15,则y的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的两个数列{an}和{bn}满足:an+1=
anbn
an2+bn2
,n∈N*
(1)求证:当n≥2时,有an
2
2
成立;
(2)设bn+1=
bn
an
,n∈N*,求证:数列{(
bn
an
)
2
}
是等差数列;
(3)设bn+1=anbn,n∈N*,试问{an}可能为等比数列吗?若可能,请求出公比的值,若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的两个数列{an}和{bn}满足:an+1=
an+bn
a
2
n
+b
2
n
,n∈N
(Ⅰ)设bn+1=1+
bn
an
,n∈N,求证:
(1)
bn+1
an+1
=
1+(
bn
an
)
2

(2)数列{(
bn
an
)
2
}是等差数列,并求出其公差;
(Ⅱ)设bn+1=
2
bn
an
,n∈N,且{an}是等比数列,求a1和b1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1=
an+bn
an2+bn2
,n∈N*
(1)设bn+1=1+
bn
an
,n∈N*,,求证:数列{(
bn
an
) 2}
是等差数列;
(2)设bn+1=
2
bn
an
,n∈N*,且{an}是等比数列,求a1和b1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的两个数列由表下给出:
定义数列{cn}:c1=0,cn=
bncn-1an
cn-1-an+bncn-1an
(n=2,3,…,5)
,并规定数列
n 1 2 3 4 5
an 1 5 3 1 2
bn 1 6 2 x y
{ an},{ bn}的“并和”为 Sab=a1+a2+…+a5+c5.若 Sab=15,
则y的最小值为
3
3

查看答案和解析>>

同步练习册答案