精英家教网 > 高中数学 > 题目详情
12.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右顶点分别为A(-5,0),B(5,0),点M是椭圆上异于A,B的动点,且直线AM与MB的斜率之积为$-\frac{16}{25}$;
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若抛物线y2=2px(p>0)的焦点与椭圆C的右焦点重合,求抛物线上的点到直线l:3x+y+2=0的距离的最小值.

分析 (Ⅰ)设点M(m,n),利用kAM•kBM=-$\frac{16}{25}$及$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}$=1,计算,可得椭圆C的离心率;
(Ⅱ)求出抛物线的方程,利用点到直线的距离公式,结合配方法,即可求抛物线上的点到直线l:3x+y+2=0的距离的最小值.

解答 解:(Ⅰ)设点M(m,n),
则kAM•kBM=$\frac{n}{m+5}•\frac{n}{m-5}$=$\frac{{n}^{2}}{{m}^{2}-25}$=-$\frac{16}{25}$,
∵$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}$=1,
∴n2=$\frac{{b}^{2}}{25}$(a2-m2),即$\frac{{n}^{2}}{{m}^{2}-25}$=-$\frac{{b}^{2}}{25}$,
∴$\frac{{b}^{2}}{25}$=$\frac{16}{25}$,∴b=4,
∴c=3,
∴e=$\frac{c}{a}$=$\frac{3}{5}$;
(Ⅱ)∵抛物线y2=2px(p>0)的焦点与椭圆C的右焦点重合,
∴$\frac{p}{2}$=3,∴p=6,
∴抛物线方程为y2=12x
设抛物线上的点为(x,y),则点到直线l:3x+y+2=0的距离d=$\frac{|3x+y+2|}{\sqrt{10}}$=$\frac{|\frac{1}{4}(y+2)^{2}+1|}{\sqrt{10}}$,
∴y=-2时,抛物线上的点到直线l:3x+y+2=0的距离的最小值为$\frac{\sqrt{10}}{10}$.

点评 本题考查求椭圆的离心率,考查抛物线的方程,考查点到直线的距离公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若a=7,b=8,c=9,则$\frac{sin2A}{sinC}$=$\frac{28}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.图中阴影部分所表示的集合是(  )
A.(A∪B)∪(B∪C)B.[∁U(A∩C)]∪BC.(A∪C)∩(∁UB)D.B∩[∁U(A∪C)]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量状况,采用系统抽样方法抽取,若抽取的第一组中的号码为0010,则第三组抽取的号码为0410.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+1|+ax(x∈R).
(1)证明:当a>1时,f(x)在R上是增函数;
(2)若函数f(x)存在两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设P是椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于(  )
A.4B.8C.6D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{lnx+k}{ex}$(k为常数,e为自然对数的底数),曲线y=f(x)在点(1,f(1)) 处的切线与x轴平行.
(1)求k的值,并求f (x)的单调区间;
(2)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知不等式组$\left\{\begin{array}{l}{x+y-2\sqrt{2}≥0}\\{x≤2\sqrt{2}}\\{y≤2\sqrt{2}}\end{array}\right.$表示平面区域Ω,过区域Ω中的任意一个点P,作圆x2+y2=1的两条切线且切点分别为A,B,当△PAB的面积最小时,cos∠APB的值为(  )
A.$\frac{7}{8}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{1}{\sqrt{{a}^{2}-{x}^{2}}}$,那么y′等于(  )
A.-$\frac{\sqrt{{a}^{2}-{x}^{2}}}{a}$B.$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$C.x(a2-x2)${\;}^{-\frac{3}{2}}$D.-$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$

查看答案和解析>>

同步练习册答案