【题目】如图,已知椭圆的离心率为,左焦点为,过点且斜率为的直线交椭圆于两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)在轴上,是否存在定点,使恒为定值?若存在,求出点的坐标和这个定值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知在上的函数满足如下条件:①函数的图象关于轴对称;②对于任意,;③当时,;④函数,,若过点的直线与函数的图象在上恰有8个交点,则直线斜率的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.见附表:参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关”
D. 有99%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:
(1)求频率分布直方图中的值;
(2)根据频率分布直方图估计该组数据的中位数(精确到);
(3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】方程的曲线即为函数的图像,对于函数,有如下结论:①在上单调递减;②函数不存在零点;③ 的最大值为;④若函数和的图像关于原点对称,则由方程确定;其中所有正确的命题序号是( )
A.③④B.②③C.①④D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区所有263户家庭人口数分组表示如下:
家庭人口数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
家庭数 | 20 | 29 | 48 | 50 | 46 | 36 | 19 | 8 | 4 | 3 |
(1)若将上述家庭人口数的263个数据分布记作,平均值记作,写出人口数方差的计算公式(只要计算公式,不必计算结果);
(2)写出他们家庭人口数的中位数(直接给出结果即可);
(3)计算家庭人口数的平均数与标准差.(写出公式,再利用计算器计算,精确到0.01)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高中毕业班的三名同学甲、乙、丙参加某大学的自主招生考核,在本次考核中只有合格和优秀两个等次.若考核为合格,则给予分的降分资格;若考核为优秀,则给予分的降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.
(1)求在这次考核中,甲、乙、丙三名同学中至少有一名考核为优秀的概率;
(2)记在这次考核中,甲、乙、丙三名同学所得降分之和为随机变量,请写出所有可能的取值,并求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com