精英家教网 > 高中数学 > 题目详情
5.若圆C的方程为:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心极坐标为($\sqrt{2},\frac{π}{4}$).(极角范围为[0,2π))

分析 化参数方程为普通方程求出圆心的直角坐标,进一步可得极坐标.

解答 解:由$\left\{\begin{array}{l}{x=1+cosθ}\\{y=1+sinθ}\end{array}\right.$,得圆的普通方程为(x-1)2+(y-1)2=1,
∴圆心的直角坐标为(1,1),
化为极坐标是($\sqrt{2},\frac{π}{4}$).
故答案为:($\sqrt{2},\frac{π}{4}$).

点评 本题考查参数方程化普通方程,考查了直角坐标化极坐标,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.等差数列{an}中,若a2,a2014为方程x2-10x+16=0的两根,则a1+a1008+a2015=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设U=R,A={x|1≤x≤3},B={x|2<x≤4},C={x|a≤x≤a+1},a为实数,
(1)分别求A∩B,A∪(∁UB); 
(2)若B∩C=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x)=4x2+1,则f(x+1)=4x2+8x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}中,a1=2,a3+a5=10.
(1)求数列{an}的通项公式;
(2)令bn=an•an+1,证明:$\frac{1}{b_1}+\frac{1}{b_2}+…\frac{1}{b_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期为π,则该函数的图象(  )
A.关于直线x=$\frac{π}{6}$对称B.关于直线x=$\frac{π}{4}$对称.
C.关于点($\frac{π}{4}$,0)对称D.关于点($\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若满足条件C=30°,AB=2,BC=a的△ABC有两个,那么a的取值范围是(  )
A.(1,2)B.(1,2$\sqrt{3}$)C.(2,4)D.(2,4$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=($\frac{1}{4}$)x-($\frac{1}{2}$)x+1在x∈[-3,2]上的值域是[$\frac{3}{4}$,57].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是某几何体的正视图和俯视图,试分析此几何体的结构特征,并画出其侧视图.

查看答案和解析>>

同步练习册答案