精英家教网 > 高中数学 > 题目详情

【题目】下面几种推理过程是演绎推理的是(  )

A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50

B. 由三角形的性质,推测空间四面体的性质

C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分

D. 在数列中,,可得,由此归纳出的通项公式

【答案】C

【解析】

推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.

解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;

B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;

C为三段论,是从一般→特殊的推理,是演绎推理;

D为不完全归纳推理,属于合情推理.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合

()时,求A∩(RB)

()时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人独立地解决同一问题,甲解出此问题的概率是,乙解出此问题的概率是.求:

1)甲、乙都解出此问题的概率;

2)甲、乙都未解出此问题的概率;

3)甲、乙恰有一人解出此问题的概率;

4)至少有一人解出此问题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解关于的不等式

(2)若对任意,都存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:

A组:10111213141516

B组:121315161714.

假设所有病人的康复时间相互独立,从AB两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.

1)求甲的康复时间不少于14天的概率;

2)如果,求甲的康复时间比乙的康复时间长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:52,54,54,56,56,56,55,55,55,55.若B样本数据恰好是A样本数据都加6后所得数据,则AB两样本的下列数字特征对应相同的是(  )

A. 众数 B. 平均数

C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在区间上有最大值,最小值,设函数.

1)求的值;

2)不等式上恒成立,求实数的取值范围;

3)方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门从某超市销售的甲、乙两种食用油中分别随机抽取100桶检测某项质量指标,由检测结果得到如图的频率分布直方图:

(I)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);

(Ⅱ)佑计在甲、乙两种食用油中各随机抽取1桶,恰有一个桶的质量指标大于20,且另—个桶的质量指标不大于20的概率;

(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55, 38.45)的桶数,求的数学期望.

注:①同一组数据用该区间的中点值作代表,计算得

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)[60,70)[70,80)[80,90)[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

同步练习册答案