精英家教网 > 高中数学 > 题目详情

已知函数数学公式函数数学公式,若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:根据x的范围确定函数f(x)的值域和g(x)的值域,进而根据f(x1)=g(x2)成立,推出值域的交集非空,先求当二者的交集为空集时,a的范围,进而可求得当集合的交集非空时a的范围.
解答:x∈[0,]时,f(x)=为单调减函数,∴f(x)∈[0,];
时,为单调增函数,∴f(x)∈(,1],
∴函数f(x)的值域为[0,1];
函数,x∈[0,1]时,值域是[2-2a,2-]
∵存在x1、x2∈[0,1]使得f(x1)=g(x2)成立,
∴[0,1]∩[2-2a,2-]≠∅
若[0,1]∩[2-2a,2-]=∅,则2-2a>1或2-<0,即a<或a>
∴[0,1]∩[2-2a,2-]≠∅时,实数a的取值范围是
故选A
点评:本题主要考查了三角函数的最值,函数的值域问题,不等式的应用,解题的关键是通过看两函数值域之间的关系来确定a的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|
1
x
-3|
,x∈(0,+∞)
(1)画出y=f(x)的大致图象,并根据图象写出函数y=f(x)的单调区间;
(2)设0<a<
1
9
,b>
1
3
试比较f(a),f(b)的大小.
(3)是否存在实数a,b,使得函数y=f(x)在[a,b]上的值域也是[a,b]?若存在,求出a,b的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,
π
2
],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,
π
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2x-1+21-x
+a
(a∈R)
(1)若f(1)=1,求实数a的值并计算f(-1)+f(3)的值;
(2)若不等式f(x)≥0对任意的x∈[1,+∞)恒成立,求实数a的取值范围;
(3)当a=-1时,设g(x)=f(x+b),是否存在实数b使g(x)为奇函数.若存在,求出b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-2x-3.
(1)若函数f(x)在(1,+∞)上单调递增,在(0,1)上单调递减,求实数a的值;
(2)是否存在实数a,使得f(x)在(
1
3
1
2
)
上是单调递增函数?若存在,试求出a的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案