【题目】已知函数只能同时满足下列三个条件中的两个:①函数的最大值为2;②函数的图象可由的图象平移得到;③函数图象的相邻两条对称轴之间的距离为.
(1)请写出这两个条件序号,并求出的解析式;
(2)求方程在区间上所有解的和.
科目:高中数学 来源: 题型:
【题目】若存在实常数和,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,,(为自然对数的底数),则( )
A.在内单调递增;
B.和之间存在“隔离直线”,且的最小值为;
C.和之间存在“隔离直线”,且的取值范围是;
D.和之间存在唯一的“隔离直线”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.
(1)求的值;
(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在轴上,中心在坐标原点,抛物线的焦点在轴上,顶点在坐标原点,在、上各取两个点,将其坐标记录于表格中:
(1)求、的标准方程;
(2)已知定点,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体棱长为,如图,为上的动点,平面.下面说法正确的是( )
A.直线与平面所成角的正弦值范围为
B.点与点重合时,平面截正方体所得的截面,其面积越大,周长就越大
C.点为的中点时,若平面经过点,则平面截正方体所得截面图形是等腰梯形
D.己知为中点,当的和最小时,为的中点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;
(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是年至年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中不正确的是( )
A.年至年,中国雪场滑雪人次逐年增加
B.年至年,中国雪场滑雪人次和同比增长率均逐年增加
C.年与年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等
D.年与年相比,中国雪场滑雪人次增长率约为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com