精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,且经过椭圆的右焦点,记椭圆的离心率为e.
(1)若直线l的倾斜角为
π
6
,求e的值;
(2)是否存在这样的e,使得原点O关于直线l对称的点恰好在椭圆C上?若存在,请求出e的值;若不存在,请说明理由.
分析:(1)求出椭圆的右焦点,进而可设直线方程,利用直线l为圆O:x2+y2=b2的一条切线,可得一方程,利用椭圆的简单性质a2=b2+c2,根据离心率公式即可求出e的值;
(2)假设存在这样的e,使得原点O关于直线l的对称点恰好在椭圆C上,不妨设方程为x-my-c=0,从而利用原点O关于直线的对称点在椭圆上,即可求解.
解答:解:(1)设椭圆的右焦点为(c,0),c=
a2-b2
,则直线的方程为x-
3
y-c=0

∵直线l为圆O:x2+y2=b2的一条切线
b=
1
2
c

a2=b2+c2=
5
4
c2

e=
c
a
=
2
5
5

(2)假设存在这样的e,使得原点O关于直线l的对称点恰好在椭圆C上,不妨设方程为x-my-c=0
∵直线l为圆O:x2+y2=b2的一条切线
m2=
c2
b2
-1

设原点O关于直线的对称点O′(x0,y0),则x0=
2c
m2+1
y0=-
2mc
m2+1

∵O′在椭圆上,代入可得
4c 2
a2(m2+1) 2
+
4m 2c 2
b2(m2+1) 2
=1

∴b2=3c2
m2=
c2
b2
-1<0
不成立
故不存在这样的e,使得原点O关于直线l的对称点恰好在椭圆C上
点评:本题以椭圆为载体,考查椭圆的离心率,考查对称问题,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案