【题目】设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
【答案】解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC ∴2sinBcosA=sin(A+C)
∵A+C=π﹣B
∴sin(A+C)=sinB>0
∴2sinBcosA=sinB
∴cosA=
∵A∈(0,π)
∴A= ;
(Ⅱ)∵b=2,c=1,A=
∴a2=b2+c2﹣2bccosA=3
∴b2=a2+c2
∴B=
∵D为BC的中点,
∴AD=
【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A= ,可求a的值,进而可求B= ,利用D为BC的中点,可求AD的长.
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设集合P={x|x2﹣x﹣6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求实数a的取值范围;
(2)若P∩Q=,求实数a的取值范围;
(3)若P∩Q={x|0≤x<3},求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个多面体的直观图及三视图如图所示:(其中M,N分别是AF,BC的中点).
(1)求证:MN∥平面CDEF;
(2)求多面体A﹣CDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=a lnx++x (a≠0).
(1)若曲线y=f (x)在点(1,f (1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f (x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和单调递减区间;
(2)将y=f(x)图象上所有的点向右平行移动个单位长度,得到y=g(x)的图象.若g(x)在(0,m)内是单调函数,求实数m的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com