精英家教网 > 高中数学 > 题目详情
14.某高校调查询问了56名男女大学生在课余时间是否参加运动,得到下表所示的数据.从表中数据分析,有多大把握认为大学生的性别与参加运动之间有关系.
参加运动不参加运动合计
男大学生20828
女大学生121628
合计322456

分析 由表中数据,计算观测值K2,对照临界值表即可得出正确的概率结论.

解答 解:由表中数据得a=20,b=8,c=12,d=16,
a+b=28,a+c=32,b+d=24,c+d=28,
n=a+b+c+d=56;
计算观测值K2=$\frac{56(×20×16-12×8)2}{32×24×28×28}$≈4.667,
因为4.667>3.841,
所以有95%的把握认为大学生的性别与参加运动之间有关系.

点评 本题考查了对立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的偶函数f(x)满足f(x+4)=f(x),且当0≤x≤2时,f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有两个根,则m的取值范围是(  )
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,|$\overrightarrow{AB}$|=2.|$\overrightarrow{AC}$|=1,点D是BC的中点.

(1)求证:$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
(2)直线l过点D且垂直于BC,E为l上任意一点,求证:$\overrightarrow{AE}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)为常数,并求出该常数;
(3)如图2,若cosA=$\frac{3}{4}$,F为线段AD上的任意一点,求$\overrightarrow{AF}$•($\overrightarrow{FB}$+$\overrightarrow{FC}$)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c是互不相等的非零实数,若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+c=0至少有一个方程有两个相异实根,反证假设应为(  )
A.三个方程中至多有一个方程有两个相异实根
B.三个方程都有两个相异实根
C.三个方程都没有两个相异实根
D.三个方程都没有实根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1)数列{an}满足关系anan+1=1-an+1(n∈N*),且a2010=2,则a2008=-3.
(2)数列{an}中,a1=1,an+1=2an+1,则{an}的通项公式为2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等差数列{an}满足a1=-11,a4+a6=-6,
(1)求{an}的通项公式an
(2)设{an}的前n项和为Sn,求满足sk=189成立的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,其中O为原点.
(1)求抛物线E的方程;
(2)当 k=1时,求弦长|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边过点P(-5,12),则sinα+cosα=(  )
A.$\frac{4}{13}$B.$-\frac{4}{13}$C.$\frac{7}{13}$D.$-\frac{7}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.当a≥2时,求证:$\sqrt{a-2}$-$\sqrt{a}$<$\sqrt{a-1}$-$\sqrt{a+1}$.

查看答案和解析>>

同步练习册答案