精英家教网 > 高中数学 > 题目详情

【题目】在数列中,,数列的前n项和满足的等比中项,.

(Ⅰ)求的值;

(Ⅱ)求数列的通项公式;

(Ⅲ)设,证明

【答案】(Ⅰ),(Ⅱ),(Ⅲ)见解析

【解析】

(Ⅰ)根据,解得,根据的等比中项,得,解得的值;(Ⅱ)根据和项与通项关系得通项递推关系,再根据叠乘法得数列的通项公式,根据等比条件可得,再用数学归纳法得的通项公式;(Ⅲ)根据符号变化规律,分类求和,再比较大小证明不等式.

(Ⅰ)因为,所以

因为的等比中项,

所以

(Ⅱ)

因此

所以

因为,所以

因为的等比中项,

所以

下面用数学归纳法证明

1)当时,,结论成立,

2)假设当时,结论成立,即

,结论成立,

综合(1)(2)可得

(Ⅲ)因为

所以当

时,

时,

时,

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若对任意均有成立,求实数的取值范围;

(2)设直线与曲线和曲线相切,切点分别为,其中.

①求证:

②当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,上顶点为,右焦点为,离心率为的面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴上的两个动点,且,直线分别与椭圆交于两点.

(ⅰ)求的面积最小值;

(ⅱ)证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)当时,求函数在区间上的最大值和最小值;

3)若对任意的,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】银川市展览馆22天中每天进馆参观的人数如下:

180 158 170 185 189 180 184 185 140 179 192

185 190 165 182 170 190 183 175 180 185 148

计算参观人数的中位数、众数、平均数、标准差(保留整数部分).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,垂直于梯形所在的平面,的中点,,四边形为矩形,线段于点.

(1)求证:平面

(2)求二面角的正弦值;

(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为正方形, 平面 ,点分别为的中点.

(1)求证:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

同步练习册答案