精英家教网 > 高中数学 > 题目详情

【题目】若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=loga| |的图象大致为(
A.
B.
C.
D.

【答案】B
【解析】解:∵当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1.
因此,必有0<a<1.
先画出函数y=loga|x|的图象:黑颜色的图象.
而函数y=loga| |=﹣loga|x|,其图象如红颜色的图象.
故选B.

由于当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,利用指数函数的图象和性质可得0<a<1.先画出函数y=loga|x|的图象,此函数是偶函数,当x>0时,即为y=logax,而函数y=loga| |=﹣loga|x|,即可得出图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点 ,则下面说法正确的是( )

A. B. C. D. 有极小值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断函数f(x)的奇偶性,并证明.
(2)求函数f(x)的单调性及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①若,则“”是“”成立的充分不必要条件;

②若椭圆的两个焦点为,且弦过点,则的周长为16;

③若命题“”与命题“”都是真命题,则命题一定是真命题;

④若命题 ,则

其中为真命题的是__________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2 . (Ⅰ)判断f(x)奇偶性并证明;
(Ⅱ)用单调性定义证明函数g(x)= 在函数f(x)定义域内单调递增,并判断f(x)=log2 在定义域内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)在平面直角坐标系中,曲线的参数方程是 (为参数, ),以原点为极点, 轴的正半轴为极轴,建立极坐标系.

(1)写出的极坐标方程;

(2)若为曲线上的两点,且,求的范围.

(Ⅱ)已知函数 .

(1) 时,解不等式

(2)若对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若α∈[0,π],β∈[﹣ ],λ∈R,且(α﹣ 3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,则cos( +β)的值为(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式中,正确的是(  )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为﹣4,求a的值.

查看答案和解析>>

同步练习册答案