精英家教网 > 高中数学 > 题目详情
16.一个几何体的三视图如图所示,则这个几何体的体积等于(  )
A.12B.4C.$\frac{16}{3}$D.$\frac{8\sqrt{3}}{3}$

分析 由三视图判断出此几何体是底面是以边长为4、2的长方形,高为2的四棱锥,根据椎体的体积公式可得答案.

解答 解:由三视图得,此几何体是底面是以边长为4、2的长方形,高为2的四棱锥,
所以此几何体的体积V=$\frac{1}{3}×4×2×2$=$\frac{16}{3}$,
故选:C.

点评 本题考查由三视图求几何体的体积,解题关键是判断几何体的形状及几何量所对应的数据,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x-1)ex
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={x|x≤3},B={x|x<2},则A∩∁RB=[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数z=$\frac{a-i}{1+i}$(a∈R,i是虚数单位)在复平面上对应的点不可能位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示的程序框图,输出的结果是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$\overrightarrow{x}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{y}$=$\overrightarrow{b}$+$\overrightarrow{c}$,$\overrightarrow{z}$=$\overrightarrow{c}$+$\overrightarrow{a}$,且{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}是空间的一个基底,给出下列向量组:①{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{x}$};②{$\overrightarrow{x}$,$\overrightarrow{y}$,$\overrightarrow{z}$};③{$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{z}$};④{$\overrightarrow{x}$,$\overrightarrow{y}$,$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$}.其中可以作为空间的基底的向量组有②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(cosβ,sinβ),0<α<β<2π,设$\overrightarrow{c}$=(2,0),若$\overrightarrow{a}$+2$\overrightarrow{b}$=$\overrightarrow{c}$,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设实数x,y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,则z=$\frac{y}{x}$+$\frac{x}{y}$的取值范围是[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线y=kx-k及抛物线y2=2px(p≥0),则(  )
A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点
C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点

查看答案和解析>>

同步练习册答案