精英家教网 > 高中数学 > 题目详情
(2013•东城区一模)如图,已知AD⊥平面ABC,CE⊥平面ABC,F为BC的中点,若AB=AC=AD=
12
CE

(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面BCE.
分析:(I)取BE的中点G,连接GF,GD.利用三角形的中位线定理即可得到GF∥EC,GF=
1
2
CE
.由AD⊥平面ABC,CE⊥平面ABC,利用线面垂直的性质定理即可得到AD∥EC,进而即可判断四边形AFGD 为平行四边形,得到AF∥DG,再利用线面平行的判定定理即可证明;
(II)利用等腰三角形的性质即可得到AF⊥BC,再利用线面垂直的性质得到GF⊥AF,利用线面垂直的判定定理即可证明AF⊥平面BEC,而DG∥AF,得到DG⊥平面BEC,利用面面垂直的定理即可证明结论.
解答:证明:(Ⅰ)取BE的中点G,连接GF,GD.
∵F是BC的中点,
则GF为△BCE的中位线.
∴GF∥EC,GF=
1
2
CE

∵AD⊥平面ABC,CE⊥平面ABC,
∴GF∥EC∥AD.
又∵AD=
1
2
CE

∴GF=AD.
∴四边形GFAD为平行四边形.
∴AF∥DG.
∵DG?平面BDE,AF?平面BDE,
∴AF∥平面BDE.
(Ⅱ)∵AB=AC,F为BC的中点,
∴AF⊥BC.
∵EC∥GF,EC⊥平面ABC,∴GF⊥平面ABC.
又AF?平面ABC,
∴GF⊥AF.
∵GF∩BC=F,
∴AF⊥平面BCE.
∵AF∥DG,
∴DG⊥平面BCE.
又DG?平面BDE,
∴平面BDE⊥平面BCE.
点评:熟练掌握三角形的中位线定理、线面垂直的判定定理和性质定理、等腰三角形的性质、平行四边形的判定和性质、面面垂直的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于
1
2
,则成绩为及格;若飞标到圆心的距离小于
1
4
,则成绩为优秀;若飞标到圆心的距离大于
1
4
且小于
1
2
,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)函数f(x)=sin(x-
π
3
)
的图象为C,有如下结论:
①图象C关于直线x=
6
对称;
②图象C关于点(
3
,0)
对称;
③函数f(x)在区间[
π
3
6
]
内是增函数,
其中正确的结论序号是
①②③
①②③
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)数列{an}的各项排成如图所示的三角形形状,其中每一行比上一行增加两项,若an=an(a≠0),则位于第10行的第8列的项等于
a89
a89
,a2013在图中位于
第45行的第77列
第45行的第77列
.(填第几行的第几列)

查看答案和解析>>

同步练习册答案