精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为E,过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求椭圆C的方程;
(II)经过点P(1,0)的直线l与椭圆交于A,B两点.
(i)若直线AE,BE的斜率为k1,k2(k1≠0,k2≠0),证明:k1•k2为定值;
(ii)若O为坐标原点,求△OAB面积的最大值.

分析 (I)由已知中椭圆通径的端点坐标,构造方程组,可得a,b的值,进而可得椭圆C的方程;
(II)经过点P(1,0)的直线l可设为x=my+1,
(i)设A(x1,y1),B(x2,y2),联立直线与椭圆的方程,结合韦达定理,可得y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1y2=$\frac{-3}{{m}^{2}+4}$,由椭圆的右顶点为E(2,0),可得:k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}•{y}_{2}}{({my}_{1}-1)({my}_{2}-1)}$=$\frac{{y}_{1}•{y}_{2}}{{{m}^{2}y}_{1}•{y}_{2}-{m({y}_{1}+y}_{2})+1}$,进而得到答案;
(ii)由题意得:△OAB面积S=$\frac{1}{2}$×1×|y1-y2|,结合对勾函数的图象和性质,可得△OAB面积的最大值.

解答 解:(I)由已知中过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(-$\sqrt{3}$,$\frac{1}{2}$).
可得:c=$\sqrt{3}$,$\frac{{b}^{2}}{a}$=$\frac{1}{2}$,a2-b2=c2
解得:a=2,b=1,
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$;…3分
(II)设A(x1,y1),B(x2,y2
证明:(i)∵直线l过定点(1,0),设x=my+1,
由$\left\{\begin{array}{l}\frac{{x}^{2}}{4}+{y}^{2}=1\\ x=my+1\end{array}\right.$得:(m2+4)y2+2my-3=0,…5分
∴y1+y2=$\frac{-2m}{{m}^{2}+4}$,y1y2=$\frac{-3}{{m}^{2}+4}$,
∵右顶点为E(2,0),
∴k1•k2=$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=$\frac{{y}_{1}•{y}_{2}}{({my}_{1}-1)({my}_{2}-1)}$=$\frac{{y}_{1}•{y}_{2}}{{{m}^{2}y}_{1}•{y}_{2}-{m({y}_{1}+y}_{2})+1}$=$\frac{\frac{-3}{{m}^{2}+4}}{{{m}^{2}•\frac{-3}{{m}^{2}+4}}_{1}-m•\frac{-2m}{{m}^{2}+4}+1}$=-$\frac{3}{4}$,
∴k1•k2为定值;…8分
(ii)由题意得:
△OAB面积S=$\frac{1}{2}$×1×|y1-y2|=$\frac{1}{2}$•$\frac{\sqrt{(2m)^{2}+12({m}^{2}+4)}}{{m}^{2}+4}$=$\frac{2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,
令t=$\sqrt{{m}^{2}+3}$,t≥$\sqrt{3}$,
则S=$\frac{2t}{{t}^{2}+1}$=$\frac{2}{t+\frac{1}{t}}$≤$\frac{2}{\sqrt{3}+\frac{1}{\sqrt{3}}}$=$\frac{\sqrt{3}}{2}$,
故△OAB面积的最大值为$\frac{\sqrt{3}}{2}$…12分

点评 本题考查的知识点是椭圆的方程,椭圆的性质,直线与椭圆的位置关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=4lnx-x,g(x)=ax2+ax+1(a∈R).
(1)求函数f(x)的单调区间;
(2))若af(x)>g(x)对任意x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将960人随机编号为1,2,…,960,用系统抽样法从中抽取32人作调查,若分组后在第一组采用简单随机抽样的方法抽到的号码为9,则应在编号落入[450,750]的人中抽取的人数为(  )
A.15B.10C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知斜率为k的直线l过点M(1,0),且与抛物线x2=2y交于A,B两点,若动点P在y轴的右侧且满足$\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$)(O为坐标原点).
(1)求动点P的轨迹方程;
(2)记动点P的轨迹为C,若曲线C的切线斜率为λ,满足$\overrightarrow{MB}=λ\overrightarrow{MA}$,点A到y轴的距离为a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列结论:
①一次试验中不同的基本事件不可能同时发生;
②设k<3,k≠0,则$\frac{x^2}{3-k}-\frac{y^2}{k}=1$与$\frac{x^2}{5}+\frac{y^2}{2}=1$必有相同的焦点;
③点P(m,3)在圆(x-2)2+(y-1)2=2的外部;
④已知ab<0,bc<0,则直线ax+by-c=0通过第一、三、四象限.
其中正确的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ekx-1(k∈R).
(Ⅰ)当k=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)设函数F(x)=f(x)+x2-kx,证明:当x∈(0,+∞)时,F(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知递增数列{an}的前n项和为Sn,且满足$2{S_n}=a_n^2+n$.
(I)求an
(II)设${b_n}={a_{n+1}}•{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将函数y=sin(2x-$\frac{π}{3}$)的图象先向左平移$\frac{π}{3}$个单位,再将图象上各点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),那么所得图象的解析式为y=sin(4x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知矩形tanA=3tanC,E、F分别是BC、AD的中点,且BC=2AB=2,现沿EF将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A-FEC的外接球的体积为(  )
A.$\frac{{\sqrt{3}}}{3}π$B.$\frac{{\sqrt{3}}}{2}π$C.$\sqrt{3}π$D.$2\sqrt{3}π$

查看答案和解析>>

同步练习册答案