精英家教网 > 高中数学 > 题目详情
将正方形ABCD沿对角线BD折成直二面角,则折起后∠ADC的大小为
60°
60°
分析:取AC的中点E,连接DE,BE,根据正方形可知EB⊥AC,ED⊥AC,则∠BED为二面角B-AC-D的平面角,在三角形BDE中求出BD的长.然后求出所求角的大小.
解答:解:AD=DC=AB=BC=a,
取AC的中点E,连接DE,BE,DE=BE=
2
2
a.
∵ABCD是正方形,∴EB⊥AC,ED⊥AC,
∴∠BED为二面角B-AC-D的平面角,∴∠BED=90°
∴BD=
DE2+BE2
=a.
所以三角形ADC是正三角形,
所以∠ADC=60°.
故答案为:60°.
点评:本题的考点是与二面角有关的立体几何综合问题,主要考查在折叠问题中考查两点间的距离,判定三角形的形状.关键是折叠问题要注意分清在折叠前后哪些量发生了变化,哪些量没变.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为
2
π
3
2
π
3

查看答案和解析>>

科目:高中数学 来源:福州一中高三数学模拟试卷(一)(文科) 题型:013

边长为1的正方形ABCD沿对其角线BD将△BDC折起得到三棱锥C-ABD,若三棱锥C-ABD的体积为,则直线BC与平面ABD所成角的正弦值为

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为________.

查看答案和解析>>

科目:高中数学 来源:2012年四川省成都市石室中学高考数学一模试卷(理科)(解析版) 题型:解答题

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为   

查看答案和解析>>

科目:高中数学 来源:2012年四川省成都市石室中学高考数学一模试卷(文科)(解析版) 题型:解答题

将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为   

查看答案和解析>>

同步练习册答案