精英家教网 > 高中数学 > 题目详情

【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).

年份(第年)

人数(人)

(1)试求人数关于年份的回归直线方程

(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);

(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.

参考公式:.

【答案】(1);(2)59;(3)

【解析】分析:(1)根据表格中数据及平均数公式可求出的值从而可得样本中心点的坐标,进而求可得公式中所需数据,求出再结合样本中心点的性质可得而可得关于的回归方程;(2)2018年对应的,代入(Ⅰ(); (3)利用列举法,所有的基本事件共个,恰好不相邻的基本事件共6个,利用古典概型概率公式可得结果.

详解(1)

(2)2018年对应的,代入(Ⅰ)().

(3)所有的基本事件共10个:

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),

恰好不相邻的基本事件共6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合为下述条件的函数的集合:①定义域为;②对任意实数,都有

1)判断函数是否为中元素,并说明理由;

2)若函数是奇函数,证明:

3)设都是中的元素,求证:也是中的元素,并举例说明,不一定是中的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只需将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= sin ,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC-中,DE分别是ABBB1的中点,=AC=CB=AB.

)证明://平面

)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3}.
(1)求实数a,b的值;
(2)解不等式 >1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x2+2 f(x)dx,则 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满

,则的值为 ( )

A. B. 1 C. 2 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.

型】单选题
束】
8

【题目】在数列{ }中,已知,则等于(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案