【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).
年份(第年) | |||||
人数(人) |
(1)试求人数关于年份的回归直线方程;
(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);
(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.
参考公式:.
科目:高中数学 来源: 题型:
【题目】设集合为下述条件的函数的集合:①定义域为;②对任意实数,都有.
(1)判断函数是否为中元素,并说明理由;
(2)若函数是奇函数,证明:;
(3)设和都是中的元素,求证:也是中的元素,并举例说明,不一定是中的元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= sin ,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得或
∴或,∴a1+a10=a1(1+q9)=-7.选D.
点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.
【题型】单选题
【结束】
8
【题目】在数列{ }中,已知,,,则等于( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com