【题目】在直角坐标系,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为
(1)求曲线的普通方程和直线的直角坐标方程;
(2)设直线与轴的交点为,经过点的动直线与曲线交于,两点,证明:为定值
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的底面是等边三角形,在底面ABC上的射影为的重心G.
(1)已知,证明:平面平面;
(2)若三棱柱的侧棱与底面所成角的正切值为,,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点.求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1=0,(n∈N*),前n项和为Sn (参考数据: ln2≈0.693,ln3≈1.099),则下列选项中错误的是( )
A.是单调递增数列,是单调递减数列B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥的底面边长为高为其内切球与面切于点,球面上与距离最近的点记为,若平面过点,且与平行,则平面截该正四棱锥所得截面的面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高42万元,第七实验室比第四实验室的改建费用高168万元,并要求每个实验室改建费用不能超过1700万元.则该研究所改建这十个实验室投入的总费用最多需要( )
A.3233万元B.4706万元C.4709万元D.4808万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:
;平面;
三棱锥的体积为定值;异面直线所成的角为定值,
其中正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在椭圆上,过点作轴的垂线,垂足为,点满足,已知点的轨迹是过点的圆.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点(,在轴的同侧),,为椭圆的左、右焦点,若,求四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com