已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
| 3 | 2 | 4 |
|
|
| 0 | 4 |
|
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
【命题意图】本小题主要考查直线、椭圆及抛物线的标准方程,考查直线和椭圆的综合应用,考查学生的逻辑思维能力和运算求解能力.
【试题解析】解:⑴设抛物线,则有,
据此验证个点知(3,),(4,4)在抛物线上,易求.(2分)
设:,把点(2,0),(,)代入得:
,解得.∴方程为. (5分)
⑵容易验证直线的斜率不存在时,不满足题意. (6分)
当直线斜率存在时,假设存在直线过抛物线焦点,设其方程为,与的交点坐标为.
由消去并整理得 ,
于是 ,.① (8分)
.
即.② (9分)
由,即,得(*).
将①、②代入(*)式,得,解得,
所以存在直线满足条件,且的方程为:或 (12分)
科目:高中数学 来源:2012-2013学年湖北省八校高三第二次联考理科数学试卷(解析版) 题型:解答题
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
(1)求,的标准方程;
(2)设斜率不为0的动直线与有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届河南安阳一中高二第一次阶段测试理科数学试卷(解析版) 题型:解答题
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点、,且满足.若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年河南省南阳市高三春期第十一次考试理科数学试卷(解析版) 题型:解答题
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
3 |
4 |
|||
0 |
(1)求,的标准方程;
(2)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,,且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年吉林省长春市高三第一次调研测试文科数学试卷(解析版) 题型:解答题
(本小题满分12分)
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
3 |
2 |
4 |
||
0 |
4 |
[ |
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com