精英家教网 > 高中数学 > 题目详情

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:

3

2

4

0

4

⑴求的标准方程;

⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.

【命题意图】本小题主要考查直线、椭圆及抛物线的标准方程,考查直线和椭圆的综合应用,考查学生的逻辑思维能力和运算求解能力.

【试题解析】解:⑴设抛物线,则有

据此验证个点知(3,),(4,4)在抛物线上,易求.(2分)

       设,把点(2,0),()代入得:

,解得.∴方程为.                 (5分)

⑵容易验证直线的斜率不存在时,不满足题意.            (6分)

当直线斜率存在时,假设存在直线过抛物线焦点,设其方程为,与的交点坐标为.

消去并整理得

于是 .①                            (8分)

.

.②              (9分)

,即,得(*).

将①、②代入(*)式,得,解得

所以存在直线满足条件,且的方程为: (12分)

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省八校高三第二次联考理科数学试卷(解析版) 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:

(1)求的标准方程;

(2)设斜率不为0的动直线有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届河南安阳一中高二第一次阶段测试理科数学试卷(解析版) 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:

 

 

 

 

 

 

(1)求的标准方程;

(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省南阳市高三春期第十一次考试理科数学试卷(解析版) 题型:解答题

  已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:

3

4

0

(1)求的标准方程;

(2)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,且满足?若存在,求出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省长春市高三第一次调研测试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:

 

3

2

4

0

4

[

 

⑴求的标准方程;

⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案