精英家教网 > 高中数学 > 题目详情

已知等差数列满足:的前n项和为
(1)求
(2)已知数列的第n项为,若成等差数列,且,设数列的前项和.求数列的前项和

(1) ,; (2).

解析试题分析:(1)由根据等差中项的性质求得,结合可以求得,再将 代入等差数列的通项公式化简整理即可,然后由等差数列的前项和公式求得;(2)根据等差数列的等差中项的性质,结合可以得到,由迭代法求数列的通项公式,注意讨论是否符合此通项公式,观察式子特点,利用裂项相消的原则求数列的前项和.
试题解析:(1)设等差数列的公差为
因为,所以.            2分

所以;                        4分
.    6分
(2)由(1)知
因为成等差数列,
所以 ,即
所以 .   8分


又因为满足上式,所以     10分
所以
.12分
考点:1.等差数列及其性质;2.等差数列的前项和;3.数列的递推公式;4.数列的求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列的前项和记为,已知.
(1)求数列的通项
(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等差数列,且.
(Ⅰ)求数列的通项公式及其前项和
(Ⅱ)若数列满足求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足.
(I)求数列的通项公式;
(II)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列 前项和为,且满足
(1)求数列的通项公式;
(2)求数列项和
(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,公差,且成等比数列.
(1)求数列的通项公式;
(2)设是首项为1公比为3 的等比数列,求数列项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差.且分别是等比数列
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列对任意自然数均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有+…+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,且
(1)求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

同步练习册答案