精英家教网 > 高中数学 > 题目详情
13、如果n=∫-22(sinx+1)dx,则(1+2x)(1-x)n展开式中x2项的系数为
-2
分析:由定积分的计算,可得n的值,进而分析在(1+2x)(1-x)n展开式中产生x2项的情况,分2种情况讨论,计算可得答案.
解答:解:根据题意,n=∫-22(sinx+1)dx=2-cos2-(-2)+cos(-2)=4,
则(1+2x)(1-x)4中,x2项产生有2种情况,
①(1+2x)中出常数项,(1-x)4中出x2项,
②(1+2x)与(1-x)4中,都出x项;
则其展开式中x2的系数为1×C42(-1)2+2×C43(-1)=-2;
故答案为:-2.
点评:本题考查二项式定理的运用,解题时关键在于对(1+2x)(1-x)n展开式中如何产生x2项的几种情况的分析讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌三模)已知四棱锥S-ABCD中,AB=BC=CD=DA=SA=2,底面ABCD是正方形,SD=SB=2
2

(I)在该四棱锥中,是否存在一条侧棱垂直于底面?如果存在,请给出证明;
(Ⅱ)用多少个这样的四棱锥可以拼成一个棱长为2的正方体ABCD-A1B1C1D1?说明你的结论.
(Ⅲ)在(Ⅱ)的条件下,设正方体ABCD-A1B1C1D1的棱BB1的中点为N,棱DD1的中点为M,求二面角A-MN-C的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),如果有限集合S满足:①S⊆N*;②当x∈S时,f(x)∈S,则称集合S是函数f(x)的生成集.例如f(x)=4-x,那么集合S1={2},S2={1,3},S3={1,2,3}都是f(x)的生成集,对于f(x)=
ax+b
x-2
(x>2,a,b∈R,若f(x)是减函数,S是f(x)的生成集,则S不可能是(  )
A、{3,4,5,6,8,14}
B、{3,4,6,10,18}
C、{3,5,6,7,10,16}
D、{3,4,6,7,12,22}

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如果有穷数列a1,a2,a3,…,an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如,由组合数组成的数列,,…,就是“对称数列”.

(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项.

(2)设{cn}是项数为2k-1(正整数k>1)的“对称数列”,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记{cn}各项的和为S2k-1,当k为何值时,S2k-1取得最大值?并求出S2k-1的最大值.

(3)对于确定的正整数m>1,写出所有项数不超过2m的“对称数列”,使得1,2,22,…,2m-1依次是该数列中连续的项;当m>1 500时,求其中一个“对称数列”前2 008项的和S2008.

(文)如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.

(1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;

(2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S;

(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列,求{dn}前n项的和Sn(n=1,2,…,100).

查看答案和解析>>

同步练习册答案