精英家教网 > 高中数学 > 题目详情

【题目】设函数的图象向右平移个单位后,图象恰好为函数的图象,则的值可以是( )

A. B. C. D.

【答案】A

【解析】由于函数f(x)=cos2x﹣2sinxcosx﹣sin2x=cos2x﹣sin2x= cos(2x+ ),

函数g(x)=2cos2x+2sinxcosx﹣1=cos2x+sin2x= cos(2x﹣),

由于将y=f(x)的图象向左平移m个单位长度,即可得到g(x)的图象,

可得: cos[2(x﹣m)+ ]= cos(2x﹣2m+ )= cos(2x﹣),

可得:2x﹣2m+ =2x﹣+2kπ,或2x﹣2m+ =2π﹣(2x﹣)+2kπ,kZ,

解得:m= ﹣kπ,kZ.

则m的值可以是

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?

非体育迷

体育迷

合计

合计

(参考公式,其中.)

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形

1求证:平面

2求证:平面

3求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面 侧面1

(Ⅰ)求证:

(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:

(1)求表中的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;

(2)如果用分层抽样的方法从样本服务次数在的人中共抽取6人,再从这6人中选2人,求2人服务次数都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(4, 0)B2, 2),C (6, 0),记ABC的外接圆为P

1P的方程.

(2)对于线段PA上的任意一点G,是否存在以B为圆心的圆,在圆B上总能找到不同的两点E、F,满足=,若存在,求圆B的半径的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1,求函数的极值;

2若函数上单调递减,求实数的取值范围;

3在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案