【题目】我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an﹣1xn﹣1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=,x∈R,其中 a>0.
(Ⅰ)求函数 f(x)的单调区间;
(Ⅱ)若函数 f(x)(x∈(-2,0))的图象与直线 y=a 有两个不同交点,求 a 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD﹣A'B'C'D'中,E是AA'的中点,P是三角形BDC'内的动点,EP⊥BC',则P的轨迹长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为A、B、C三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).
工种类别 | A | B | C |
赔付频率 |
对于A、B、C三类工种职工每人每年保费分别为a元,a元,b元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费a、b所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费a、b所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天. 该同志到达当日空气质量重度污染的概率 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解一种植物的生长情况,抽取一批该植物样本测量高度(单位:cm),其频率分布直方图如图所示.
(1)求该植物样本高度的平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);
(2)假设该植物的高度Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2,利用该正态分布求P(64.5<Z<96).
(附:=10.5.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,直线:θ=(ρ>0),A(2,0).
(1)把C1的普通方程化为极坐标方程,并求点A到直线的中距离;
(2)设直线分别交C1,C2于点P,Q,求△APQ的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com