精英家教网 > 高中数学 > 题目详情

,为坐标原点,

三点共线,则的最大值是        

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆的对称中心为坐标原点,其中一个顶点为A(0,2),右焦点F与点B(
2
 , 
2
)
的距离为2.
(1)求椭圆的方程;
(2)是否存在经过点(0,-3)的直线l,使直线l与椭圆相交于不同的两点M,N满足|
AM
|=|
AN
|
?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

过P(2,1)作直线L与x轴正半轴、y轴的正半轴分别交于A、B两点,设∠BAO=2α(O为坐标原点),当△AOB的周长最小时,cotα=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
5
,两焦点分别为F1,F2,点M(x0,y0)是椭圆C上一点,且△F1F2M的周长为16,设线段MO(O为坐标原点)与圆O:x2+y2=r2交于点N,且线段MN长度的最小值为
15
4

(1)求椭圆C以及圆O的方程;
(2)当点M(x0,y0)在椭圆C上运动时,判断直线l:x0x+y0y=1与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省韶关市高三第一次调研测试数学理科试卷(解析版) 题型:解答题

椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MOO为坐标原点)与圆交于点N,且线段MN长度的最小值为.

(1)求椭圆C以及圆O的方程;

(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三开学第一次考试理科数学 题型:解答题

(14分)设椭圆的对称中心为坐标原点,其中一个顶点为,右焦点与点

的距离为

(1)求椭圆的方程;

(2)是否存在经过点的直线,使直线与椭圆相交于不同的两点满足?若存在,求出直线的方程;若不存在,请说明理由.

 

 

查看答案和解析>>

同步练习册答案