精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sinωx﹣cosωx(ω>0),,若方程f(x)=﹣1(0,π)上有且只有四个实数根,则实数ω的取值范围为 ( )

A. ] B. ] C. ] D. ]

【答案】A

【解析】

化简f(x)的解析式,作出f(x)的函数图象,利用三角函数的性质求出直线y=﹣1与y=f(x)在(0,+∞)上的交点坐标,则π介于第4和第5个交点横坐标之间.

f(x)=2sin(ωx﹣),

作出f(x)的函数图象如图所示:

令2sin(ωx﹣)=﹣1得ωx﹣=﹣+2kπ,或ωx﹣=+2kπ,

∴x=+,或x=+,k∈Z,

设直线y=﹣1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,

则xA=,xB=

方程f(x)=﹣1在(0,π)上有且只有四个实数根,

∴xA<π≤xB

<π≤,解得

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知空间四边形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,则空间四边形ABCD的外接球的表面积为( )

A. 60π B. 36π C. 24π D. 12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的值域;

2)求函数的最小正周期及函数的单调区间;

3)将函数的图像向右平移个单位后,再将得到的图像上各点的横坐标变为原来的倍,纵坐标保持不变,得到函数的图像,求函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四个小球,分别写有文、明、中、国四个字,有放回地从中任取一个小球,直到”“两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生03之间取整数值的随机数,分别用0123代表文、明、中、国这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:

232 321 230 023 123 021 132 220 001

231 130 133 231 013 320 122 103 233

由此可以估计,恰好第三次就停止的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题,其中所有正确命题的序号是__________

①抛物线的准线方程为

②过点作与抛物线只有一个公共点的直线仅有1条;

是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.

④抛物线上到直线距离最短的点的坐标为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若是奇函数,求的值,并判断的单调性(不用证明);

(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f (x) = x ex (xR)

Ⅰ)求函数 f (x)的单调区间和极值;

Ⅱ)若x (0, 1), 求证: f (2 x) > f (x);

Ⅲ)若x1 (0, 1), x2(1, +∞), f (x1) = f (x2), 求证: x1 + x2 > 2.

查看答案和解析>>

同步练习册答案