【题目】已知函数f(x)=sinωx﹣cosωx(ω>0),,若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为 ( )
A. (,] B. (,] C. (,] D. (,]
科目:高中数学 来源: 题型:
【题目】已知空间四边形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,则空间四边形ABCD的外接球的表面积为( )
A. 60π B. 36π C. 24π D. 12π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求的值域;
(2)求函数的最小正周期及函数的单调区间;
(3)将函数的图像向右平移个单位后,再将得到的图像上各点的横坐标变为原来的倍,纵坐标保持不变,得到函数的图像,求函数的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估计,恰好第三次就停止的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中所有正确命题的序号是__________.
①抛物线的准线方程为;
②过点作与抛物线只有一个公共点的直线仅有1条;
③是抛物线上一动点,以为圆心作与抛物线准线相切的圆,则此圆一定过定点.
④抛物线上到直线距离最短的点的坐标为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f (x) = x ex (xR)
(Ⅰ)求函数 f (x)的单调区间和极值;
(Ⅱ)若x (0, 1), 求证: f (2 x) > f (x);
(Ⅲ)若x1 (0, 1), x2(1, +∞), 且 f (x1) = f (x2), 求证: x1 + x2 > 2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com