(Ⅰ)求证:PB⊥DM;
(Ⅱ) 求CD与平面ADMN所成的角。
本题主要考查空间线线,线面关系,空间向量的概念与运算等基础知识,同时考查空间想象能力。
解:方法一:
(Ⅰ)因为N是PB的中点,PA=AB,
所以AN⊥PB。
因为AD⊥平面PAB,所以AD⊥PB,
从而PB⊥平面ADMN,
因为DM平面ADMN,
所以PB⊥DM。
(Ⅱ)取AD的中点G,连结BG、NG,
则BG//CD,
所以BG与平面ADMN所成的角和CD与平面ADMN
所成的角相等。
因为PB⊥平面ADMN,
所以∠BGN是BG与平面ADMN所成的角。
在Rt△BGN中,
sin∠BGN==。
故CD与平面ADMN所成的角是arcsin。
方法二:
如图,以A为坐标原点建立空间直角坐标系A-xyz,设BC=1,则A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0),M(1,,1),D(0,2,0)。
(Ⅰ)因为=0,
所以PB⊥DM。
(Ⅱ)因为=0,
所以PB⊥AD,
又因为PB⊥DM,
所以PB⊥平面ADMN。
因此的余角即是CD与平面ADMN所成的角
因为
= ,
所以CD与平面ADMN所成的角为arcsin.
科目:高中数学 来源: 题型:
图1-1-17
A.1个 B.2个 C.3个 D.无穷多个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com