精英家教网 > 高中数学 > 题目详情
给出函数f(x)=loga
x+2
x-2
(a>0,a≠1)

(1)求函数的定义域;
(2)判断函数的奇偶性.
(1)由题意,
x+2
x-2
>0
,解得:x<-2或x>2,
所以,函数定义域为{x|x<-2或x>2}.
(2)由(1)可知定义域关于原点对称,则
f(-x)=loga
-x+2
-x-2
=loga
x-2
x+2
=loga(
x+2
x-2
)-1
=-loga
x+2
x-2
=-f(x).
所以函数y=f(x)为奇函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:
①函数f(x)=(
12
)x
为R上的l高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);
其中正确的命题是
②③
②③
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个命题,其中所有正确命题的序号为
①③
①③

①函数f(x)=
x2-2x
+2
x2-5x+4
的最小值为l+2
2

②已知函数f (x)=|x2-2|,若f (a)=f (b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1;
③命题“函数f(x)=xsinx+1,当x1,x2[-
π
2
π
2
]
,且|x1|>|x2|时,有f (x1)>f(x2)”是真命题;
④“a=
1
0
1-x2
dx
”是函数“y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
⑤已知等差数列{an}的前n项和为Sn,
OA
OB
为不共线向量,又
OP
=a
OA
+a2012
OB
,若
PA
PB
,则S2012=2013.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若函数y=f(x)在某一区间D上任取两个实数x1、x2,且x1≠x2,都有
f(x1)+f(x2)
2
>f(
x1+x2
2
)
,则称函数y=f(x)在区间D上具有性质L.
(1)写出一个在其定义域上具有性质L的对数函数(不要求证明).
(2)对于函数f(x)=x+
1
x
,判断其在区间(0,+∞)上是否具有性质L?并用所给定义证明你的结论.
(3)若函数f(x)=
1
x
-ax2
在区间(0,1)上具有性质L,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈M,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f(x)=lgx为(0,+∞)上的m(m>0)高调函数;
③函数f(x)=sin2x为R上的π高调函数;
④若函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).
其中正确命题的序号是
①②③④
①②③④
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案