精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{{x}^{2}-1}{x}$为奇函数,则f(2)+f(-2)=0.

分析 根据奇函数的性质,可得f(x)+f(-x)=0,将x=2代入可得答案.

解答 解:∵函数f(x)=$\frac{{x}^{2}-1}{x}$为奇函数,
∴f(x)+f(-x)=0,
f(2)+f(-2)=0,
故答案为:0

点评 本题考查的知识点是函数奇偶性的性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知a为正实数,函数f(x)=x2-2x+a,且对任意的x∈[0,a],都有f(x)∈[-a,a],则实数a的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若a≤-1,则|a+1|+a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知变量x,y满足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{x+y+3}{x+2}$的取值范围是[$\frac{5}{4}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点(2,3)关于原点对称的点的坐标为(-2,-3);点(2,3)关于y轴对称的点的坐标为(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设A={x|2x2+ax+2=0}.B={x|x2+3x+2b=0},A∪B={$\frac{1}{2}$,-5,2},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=1+$\frac{a}{x}$+lnx+$\frac{lnx}{x}$,且曲线f(x)在点(1,f(1))处的切线与直线x-y+4=0平行.
(1)求a的值;
(2)判断函数f(x)的单调性;
(3)求证:当x>1时,$\frac{f(x)}{2{e}^{x-1}}$>$\frac{e+1}{x{e}^{x}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(π+α)=-$\frac{1}{2}$,求cos(2π-α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知角α满足$\frac{1}{|sinα|}=-\frac{1}{sinα}$,且lg(cosα)有意义.
(1)试判断角α是第几象限角;
(2)若角α的终边与单位圆相交于点M($\frac{3}{5}$,m),求m的值及sinα

查看答案和解析>>

同步练习册答案