A. | 2×31007-2 | B. | 2×31007 | C. | $\frac{{3}^{2014}-1}{2}$ | D. | $\frac{{3}^{2014}+1}{2}$ |
分析 由已知得数列{an}为首项为1公比为3的等比数列,代入等比数列前n项和公式可得S2014.
解答 解:∵Sn为数列{an}的前n项和,且满足a1=1,a2=3,an+2=3an+1,
∴$\frac{{a}_{n+2}}{{a}_{n+1}}=3$,
又$\frac{{a}_{2}}{{a}_{1}}=3$,满足上式,
∴{an}是首项为1,公比为3的等比数列,
∴S2014=$\frac{1-{3}^{2014}}{1-3}$=$\frac{{3}^{2014}-1}{3}$.
故选:C.
点评 本题考查数列的前2014项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{AD}$ | B. | $\overrightarrow{CE}$ | C. | $\overrightarrow{DE}$ | D. | $\overrightarrow{ED}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{\sqrt{3}}{3}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com