精英家教网 > 高中数学 > 题目详情
设0<θ<π,a∈R,,则θ的值为( )
A.
B.
C.
D.
【答案】分析:将题中条件左边的复数化为a+bi(a∈R,b∈R)的形式再根据复数的相等再结合θ的范围即可得解.
解答:解:∵
∴a++(-a)i=cosθ+i
∴利用复数的相等可得cosθ=a+=
∴a=0,cosθ=
∵0<θ<π

故选D
点评:本题主要考查了利用复数的相等求角θ的值.解题的关键是要牢记复数相等的充要条件实部和实部相等且虚部和虚部相等!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知函数f(x)=2+
1
a
-
1
a2x
,实数a∈R且a≠0.
(1)设mn>0,判断函数f(x)在[m,n]上的单调性,并说明理由;
(2)设0<m<n且a>0时,f(x)的定义域和值域都是[m,n],求n-m的最大值;
(3)若不等式|a2f(x)|≤2x对x≥1恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx+
1
x
,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a>0时,若对任意x>0,不等式f(x)≥2a成立,求a的取值范围;
(Ⅲ)当a<0时,设x1>0,x2>0,试比较f(
x1+x2
2
)与
f(x1)+f(x2)
2
的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)的图象与f(x)=x+
1
x
的图象关于点A(0,1)对称.
(1)求y=g(x)的函数解析式;
(2)设F(x)=g(x)+
a
x
(a∈R),若对任意x∈(0,2],F(x)≥8恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)设函数f(x)=
eaxx2+1
,a∈R

(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知函数x>0).(1)若b,求证e是自然对数的底数);(2)设F(x)=+x≥1,a∈R),试问函数F(x)是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案