精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,已知(a-3b)cos C=c(3cos B-cos A).

(1)求的值; (2)若c=a,求角C的大小.

【答案】(1)3; (2) .

【解析】

(1)由正弦定理得,(sin A-3sin B)cos C=sin C(3cos B-cos A),即sin(A+C)=3sin(C+B),即sin B=3sin A。

(2)(2)由(1)知b=3a,∵c=a,

∴cos C=,得解

(1)由正弦定理得,(sin A-3sin B)cos C=sin C(3cos B-cos A),

∴sin Acos C+cos Asin C=3sin Ccos B+3cos Csin B,

即sin(A+C)=3sin(C+B),即sin B=3sin A,∴=3.

(2)由(1)知b=3a,∵c=a,

∴cos C=

∵C∈(0,π),∴C=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|x﹣1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.

(1)写出S关于x的函数关系式;

(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣mlnx在[2,+∞)上单调递增,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1+cosωx,1), =(1,a+ sinωx)(ω为常数且ω>0),函数f(x)= 在R上的最大值为2.
(1)求实数a的值;
(2)把函数y=f(x)的图象向右平移 个单位,可得函数y=g(x)的图象,若y=g(x)在[0, ]上为增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x| <0},N={x|x≤﹣1},则集合{x|x≥3}等于(
A.M∩N
B.M∪N
C.R(M∩N)
D.R(M∪N)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在8件获奖作品中,有3件一等奖,有5件二等奖,从这8件作品中任取3件.
(1)求取出的3件作品中,一等奖多于二等奖的概率;
(2)设X为取出的3件作品中一等奖的件数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回地连续摸三次,每次摸出2个球,若2个球颜色不同则为中奖,否则不中奖.

(1)当n=3时,设三次摸球中中奖的次数为X,求随机变量X的分布列;

(2)记三次摸球中恰有两次中奖的概率为P,求当n取多少时,P的值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海上养殖基地A,接到气象部门预报,位于基地南偏东60°方向相距20(+1)海里的海面上有一台风中心,影响半径为20海里,正以每小时10海里的速度沿某一方向匀速直线前进,预计台风中心在基地东北方向时对基地的影响最强烈且(+1)小时后开始影响基地持续2小时,求台风移动的方向.

查看答案和解析>>

同步练习册答案